Skip to main content
Log in

Protein Restriction Without Strong Caloric Restriction Decreases Mitochondrial Oxygen Radical Production and Oxidative DNA Damage in Rat Liver

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Previous studies have shown that caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat organs, which can be linked to the slowing of aging rate induced by this regime. These two characteristics are also typical of long-lived animals. However, it has never been investigated if those decreases are linked to the decrease in the intake of calories themselves or to decreases in specific dietary components. In this study the possible role of the dietary protein was investigated. Using semipurified diets, the ingestion of proteins of Wistar rats was decreased by 40% below that of controls while the other dietary components were ingested at the same level as in animals fed ad libitum. After seven weeks in this regime the liver of the protein restricted animals showed 30–40% decreases in mitochondrial production of reactive oxygen species (ROS) and in oxidative damage to nuclear and mitochondrial DNA. The decreases in ROS generation occurred specifically at complex~I. They also occurred without changes in mitochondrial oxygen consumption. Instead, there was a decrease in the percent free radical leak (the percentage of total electron flow leading to ROS generation in the respiratory chain). These results are strikingly similar to those previously obtained after 40% caloric restriction in the liver of Wistar rats. Thus, the results suggest that part of the decrease in aging rate induced by caloric restriction can be due to the decreased intake of proteins acting through decreases in mitochondrial ROS production and oxidative DNA damage. Interestingly, these tissue oxidative stress-linked parameters can be lowered by restricting only the intake of dietary protein, probably a more feasible option than caloric restriction for adult humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, V. E. (2003). Med. Hypoteses 60, 924–929.

    Google Scholar 

  • Armeni, T., Principato, G., Quiles, J. L., Pieri, C., Bompadre, S., and Battino, M. (2003). J. Bioenerg. Biomembr. 35, 181–191.

    Google Scholar 

  • Asunción, J. G., Millan, A., Pla, R., Bruseghini, I., Esteras, A., Pallardo, F. V., Sastre, J., and Viña, J. (1996). FASEB J. 10, 333–338.

    Google Scholar 

  • Barger, J. L., Walford, R. L., and Weindruch, R. (2003). Exp. Gerontol. 38, 1343–1351.

    Google Scholar 

  • Barja, G. (1999). J. Bioenerg. Biomembr. 31, 347–366.

    Google Scholar 

  • Barja, G. (2002a). Aging Res. Rev. 1, 397–411.

    Google Scholar 

  • Barja, G. (2002b). J. Bioenerg. Biomembr. 34, 227–233.

    Google Scholar 

  • Barja, G. (2004). Biol. Rev. 79, 235–251.

    Google Scholar 

  • Barja, G., and Herrero, A. (2000). FASEB J. 14, 312–318.

    Google Scholar 

  • Barrows, C. H., Jr., and Kokkonen, G. (1975). Growth 39, 525–533.

    Google Scholar 

  • Beckman, K. B., and Ames, B. N. (1998). Physiol. Rev. 78, 547–581.

    Google Scholar 

  • Davis, T. A., Bales, C. W., and Beauchene, R. E. (1983). Exp. Gerontol. 18, 427–435.

    Google Scholar 

  • Dibak, O., Krajcovicova, M., Kopec, Z., and Grancicova, E. (1984). Physiol. Bohemoslov. 33, 320–335.

    Google Scholar 

  • Djuric, Z., Lewis, S. M., Lu, M. H., Mayhugh, M., Naegli, L., Tang, N., and Hart, R. W. (2002). Toxicol. Sci. 66, 125–130.

    Google Scholar 

  • Doi, S. Q., Rasaiah, S., Tack, I., Mysore, J., Kopchick, J. J., Moore, J., Hirszel, P., Striker, L. J., and Striker, G. E. (2001). Am. J. Nephrol. 21, 331–339.

    Google Scholar 

  • Dröge, W. (2001). Physiol. Rev. 82, 47–95.

    Google Scholar 

  • Fernandes, G., Yunis, E. J., and Good, R. A. (1976). Proc. Natl. Acad. Sci. U.S.A. 73, 1279–1283.

    Google Scholar 

  • Goodrick, C. L. (1978). J. Gerontol. 33, 184–190.

    Google Scholar 

  • Gredilla, R., and Barja, G. (2003). In Energy Metabolism and Lifespan Determination. Advances in Cell Aging and Gerontology (Mattson, M. P., ed.), Elsevier, Amsterdam, pp. 105–122.Vol. 14.

    Google Scholar 

  • Gredilla, R., Barja, G., and López-Torres, M. (2001a). J. Bioenerg. Biomembr. 33, 279–287.

    Google Scholar 

  • Gredilla, R., López-Torres, M., and Barja, G. (2002). Microsc. Res. Technol. 59, 273–277.

    Google Scholar 

  • Gredilla, R., Sanz, A., López-Torres, M., and Barja, G. (2001b). FASEB J. 15, 1589–1591.

    Google Scholar 

  • Horakova, M., Deyl, Z., Hausmann, J., and Macek, K. (1988). Mech. Ageing Dev. 45, 1–7.

    Google Scholar 

  • Hubert, M. F., Laroque, P., Gillet, J. P., and Keenan, K. P. (2000). Toxicol. Sci. 58, 195–207.

    Google Scholar 

  • Keenan, K. P., Ballam, G. C., Dixit, R., Soper, K. A., Laroque, P., Mattson, B. A., Adams, S., and Coleman, J. B. (1997). J. Nutr. 127, 851S--856S.

    Google Scholar 

  • Latorre, A., Moya, A., and Ayala, A. (1986). Proc. Natl. Acad. Sci. U.S.A. 83, 8649–8653.

    Google Scholar 

  • Leto, S., Kokkonen, G. C., and Barrows, C. H., Jr. (1976). J. Gerontol. 31, 144–148.

    Google Scholar 

  • Loft, S., and Poulsen, H. E. (1999). Method. Enzymol. 300, 166–184.

    Google Scholar 

  • López-Torres, M., Gredilla, R., Sanz, A., and Barja, G. (2002). Free Rad. Biol. Med. 32, 882–889.

    Google Scholar 

  • Maeda, H., Gleiser, C. A., Masoro, E. J., Murata, I., McMahan, C. A., and Yu, B. P. (1985). J. Gerontol. 40, 671–688.

    Google Scholar 

  • Mark, M. C. M., Reiser, K. M., Harris, R., Jr., and McDonald, R. B. (1995). J. Gerontol. A 50, B148–B154.

    Google Scholar 

  • Masoro, E. J., Shimokawa, I., and Yu, B. P. (1991). Ann. N.Y. Acad. Sci. 621, 337–352.

    Google Scholar 

  • Mattison, J. A., Lane, M. A., Roth, G. S., and Ingram, D. K. (2003). Exp. Gerontol. 38, 35–46.

    Google Scholar 

  • Ramanadham, M., and Kaplay, S. S. (1979). Nutr. Metab. 23, 235–240.

    Google Scholar 

  • Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., and Zimmerman, J. A. (1994). FASEB J. 8, 1302–1307.

    Google Scholar 

  • Rodrigues, M. A. M., Sanchez-Negrette, M., Mantovani, M. S., Sant’ana, L. S., Angeleli, A. Y. O., Montenegro, M. R., and de Camargo, J. L. V. (1991). Food Chem. Toxicol. 29, 757–764.

    Google Scholar 

  • Sambuichi, E. J., Shizuka, M. S. F., and Kishi, K. (1991). Nutr. Res. 11, 1415–1426.

    Google Scholar 

  • Stoltzner, G. (1977). Growth 41, 337–348.

    Google Scholar 

  • Wang, C., Weindruch, R., Fernández, J. R., Coffey, C. S., Patel, P., and Allison, D. B. (2004). Int. J. Obesity 28, 357–362.

    Google Scholar 

  • Youngman, L. D. (1993). Mutat. Res. 395, 165–179.

    Google Scholar 

  • Youngman, L. D., Park, J.-Y.K., and Ames, B. N. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 9112–9116.

    Google Scholar 

  • Yu, B. P., Masoro, E. J., and McMahan, C. A. (1985). J. Gerontol. 40, 657–670.

    Google Scholar 

  • Zimmerman, J. A., Malloy, V., Krajcik, R., and Orentreich, N. (2003). Exp. Gerontol. 38, 47–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, A., Caro, P. & Barja, G. Protein Restriction Without Strong Caloric Restriction Decreases Mitochondrial Oxygen Radical Production and Oxidative DNA Damage in Rat Liver. J Bioenerg Biomembr 36, 545–552 (2004). https://doi.org/10.1007/s10863-004-9001-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-004-9001-7

Keywords

Navigation