Skip to main content
Log in

Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Non-Uniform Sampling has the potential to exploit the optimal resolution of high-field NMR instruments. This is not possible in 3D and 4D NMR experiments when using traditional uniform sampling due to the long overall measurement time. Nominally, uniformly sampled time domain data acquired to a maximum evolution time tmax can be extended to high resolution via a virtual maximum evolution time t*max while extrapolating with linear prediction or iterative soft thresholding (IST). At the high resolution obtainable with extrapolation of US data, however, the accuracy of peak positions is compromised as observed when comparing inter- and intra-residue peaks in a 3D HNCA experiment. However, the accuracy of peak positions is largely improved by spreading the same number of acquired time domain data points non-uniformly over a larger evolution time to an optimal tmax followed by extrapolation to a total t*max and processing the data with an appropriate reconstruction method, such as hmsIST. To explore the optimum value of experimentally measured tmax to be reached non-uniformly with a given number of sampling points we have created test situations of time-equivalent experiments and evaluate sensitivity and accuracy of peak positions. Here we use signal-to-maximum-noise ratio as the decisive measure of sensitivity. We find that both sensitivity and resolution are optimal when PoissonGap sampling to a tmax of about ½*T2 *. Digital resolution is further enhanced by extrapolating the range of acquired time domain data to 2*T2 * but without measuring experimental points beyond ½*T2 *.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balsgart NM, Vosegaard T (2012) Fast forward maximum entropy reconstruction of sparsely sampled data. J Magn Resonance 223:164–169 doi:10.1016/j.jmr.2012.07.002

    Article  ADS  Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Resonance 73:69–77

    ADS  Google Scholar 

  • Candes JC, Walkin MB (2008) An intorduction to compressive sensing. IEEE Signal Process Mag 25:21–30

    Article  Google Scholar 

  • Cavanagh J, III AGP, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectroscopy. J Magn Resonance 91:429–436

    Google Scholar 

  • Celik H, Shaka AJ (2010) Filter diagonalization using a “sensitivity-enhanced basis”: improved performance for noisy NMR spectra. J Magn Resonance 207:17–23 doi:10.1016/j.jmr.2010.07.019

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2006) Polar fourier transforms of radially sampled NMR data. J Magn Resonance 182:84–95 doi:10.1016/j.jmr.2006.06.016

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239 doi:10.1007/s10858-008-9275-x

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Delsuc MA, Mallavin TE (1998) Maximum entropy processing of DOSY NMR spectra. Anal Chem 70:2146–2146

    Article  Google Scholar 

  • Donoho DL (2006) For most large underdetermined systems of linear equations the minimal \(\ell^1\)-norm solution is also the sparsest solution. Commun Pure Appl Math 59:797–829. doi:10.1002/cpa.20132

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM, Hoch JC, Stern AS (1992) Maximum entropy and the nearly black object. J R Statist Soc B 54:41–81

    MathSciNet  MATH  Google Scholar 

  • Drori I (2007) Fast minimization by iterative thresholding for multidimensional NMR spectroscopy EURASIP. J Adv Signal Process 2007:020248 doi:10.1155/2007/20248

    Article  MathSciNet  MATH  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Hogbom JA (1974) Aperature synthesis with a non+ regular distribution of interferometer baseline. Astron Astrophysi Suppl 15:417–426

    Google Scholar 

  • Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem 50:6548–6551. doi:10.1002/anie.201100440

    Article  Google Scholar 

  • Hyberts SG et al (2007) Ultrahigh-resolution 1 H-13C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116

    Article  Google Scholar 

  • Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein nmr data. J Am Chem Soc 132:2145–2147

    Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional poisson gap scheduling. J Biomol NMR 52:315–327 doi:10.1007/s10858-012-9611-z

    Article  Google Scholar 

  • Hyberts SG, Robson SA, Wagner G (2013) Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra. J Biomol NMR 55:167–178 doi:10.1007/s10858-012-9698-2

    Article  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhenced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem 50:5556–5559. doi:10.1002/anie.201100370

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka-Kazimierczuk A, Kozminski W (2010) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Resonance 205:286–292 doi:10.1016/j.jmr.2010.05.012

    Article  ADS  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly Obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kupce E, Freeman R (2005) Fast multidimensional NMR: radial sampling of evolution space. J Magn Resonance 173:317–321 doi:10.1016/j.jmr.2004.12.004

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (2008) Fast multi-dimensional NMR by minimal sampling. J Magn Resonance 191:164–168 doi:10.1016/j.jmr.2007.12.013

    Article  ADS  Google Scholar 

  • Laue ED, Skilling J, Staunton J (1985) Maximum entropy reconstruction of spectra containing antiphase peaks. J Magn Resonance 63:418–424

    ADS  Google Scholar 

  • Lee S, Wen H, An YJ, Cha JW, Ko YJ, Hyberts SG, Park S (2017) Carbon isotopomer analysis with non-unifom sampling HSQC NMR for cell extract and live cell metabolomics studies. Anal Chem 89:1078–1085. doi:10.1021/acs.analchem.6b02107

    Article  Google Scholar 

  • Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J Magn Resonance 133:304–312

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acqusition of high-resolution dark spectra. J Am Chem Soc 131:4648–4658

    Article  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Resonance Spectrosc 59:271–292 doi:10.1016/j.pnmrs.2011.02.002

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  Google Scholar 

  • Palmer MR, Suiter CL, Henry GE, Rovnyak J, Hoch JC, Polenova T, Rovnyak D (2015) Sensitivity of nonuniform sampling NMR. J Phys Chem B 119:6502–6515 doi:10.1021/jp5126415

    Article  Google Scholar 

  • Paramasivam S et al (2012) Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 116:7416–7427 doi:10.1021/jp3032786

    Article  Google Scholar 

  • Rovnyak D, Hoch JC, Stern AS, Wagner G (2004) Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J Biomol NMR 30:1–10

    Article  Google Scholar 

  • Rovnyak D, Sarcone M, Jiang Z (2011) Sensitivity enhancement for maximally resolved two-dimensional NMR by nonuniform sampling. Magn Resonance Chem. doi:10.1002/mrc.2775

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  MathSciNet  MATH  Google Scholar 

  • Stern AS, Donoho DL, Hoch JC (2007) NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. J Magn Resonance 188:295–300 doi:10.1016/j.jmr.2007.07.008

    Article  ADS  Google Scholar 

  • Sun S, Gill M, Li Y, Huang M, Byrd RA (2015) Efficient and generalized processing of multidimensional NUS NMR data: the NESTA algorithm and comparison of regularization terms. J Biomol NMR 62:105–117 doi:10.1007/s10858-015-9923-x

    Article  Google Scholar 

  • Waudby CA, Christodoulou J (2012) An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR. J Magn Resonance 219:46–52 doi:10.1016/j.jmr.2012.04.013

    Article  ADS  Google Scholar 

  • Worley B (2016) Convex accelerated maximum entropy reconstruction. J Magn Resonance 265:90–98 doi:10.1016/j.jmr.2016.02.003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Gregory Heffron for the assistance with NMR instruments and Dr. David Morgan for help with the computers used for this study.

Funding

This study was supported by the National Institute of Health (Grant GM047467 and EB002026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Ethics declarations

Conflict of interest

GW receives a honorarium from Springer as Editor in Chief of JBNMR. The authors declare that they have no further conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1090 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyberts, S.G., Robson, S.A. & Wagner, G. Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy. J Biomol NMR 68, 139–154 (2017). https://doi.org/10.1007/s10858-017-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0103-z

Keywords

Navigation