Skip to main content
Log in

Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using 17O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aime S, Botta M, Ermondi G (1992) NMR study of solution structures and dynamics of lanthanide(III) complexes of DOTA. Inorg Chem 31:4291–4299. doi:10.1021/ic00047a016

    Article  Google Scholar 

  • Aime S, Botta M, Ermondi G, Terreno E, Anelli PL, Fedeli F, Uggeri F (1996) Relaxometric, structural, and dynamic NMR studies of DOTA-like Ln(III) complexes (Ln = La, Gd, Ho, Yb) containing a p-nitrophenyl substituent. Inorg Chem 35:2726–2736. doi:10.1021/ic950981u

    Article  Google Scholar 

  • Aime S, Barge A, Botta M, Parker D, de Sousa AS (1997) Prototropic vs whole water exchange contributions to the solvent relaxation enhancement in the aqueous solution of a cationic Gd3+ macrocyclic complex. J Am Chem Soc 119:4767–4768. doi:10.1021/ja963743m

    Article  Google Scholar 

  • Aime S, Barge A, Botta M, De Sousa AS, Parker D (1998) Direct NMR spectroscopic observation of a lanthanide-coordinated water molecule whose exchange rate is dependent on the conformation of the complexes. Angew Chem Int Ed Engl 37:2673–2675. doi:10.1002/(SICI)1521-3773(19981016)37:19<2673:AID-ANIE2673>3.0.CO;2-%23

    Article  Google Scholar 

  • Aime S et al (1999) NMR, relaxometric, and structural studies of the hydration and exchange dynamics of cationic lanthanide complexes of macrocyclic tetraamide ligands. J Am Chem Soc 121:5762–5771. doi:10.1021/ja990225d

    Article  Google Scholar 

  • Aime S, Barge A, delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E (2002) Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47:639–648. doi:10.1002/mrm.10106

    Article  Google Scholar 

  • Aime S, delli Castelli D, Crich SG, Gianolio E, Terreno E (2009) Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc Chem Res 42:822–831. doi:10.1021/ar800192p

    Article  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28:249–261. doi:10.1023/B:JNMR.0000013703.30623.f7

    Article  Google Scholar 

  • Baranyai Z, Brücher T, Iványi T, Király R, Lázár I, Zékány L (2005) Complexation properties of N,N’,N”,N”‘-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetraki(1-oxoethane-2-1-diyl)]tetrakis[glycine](H4dotagl). Equilibrium, kinetic, and relaxation behavior of the lanthanide(III) complexes. Helv Chim Acta 88:604–617. doi:10.1002/hlca.200590042

    Article  Google Scholar 

  • Beeby A et al (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perk Trans 2:493–503. doi:10.1039/a808692c

    Article  Google Scholar 

  • Benetollo F, Bombieri G, Calabi L, Aime S, Botta M (2003) Structural variations across the lanthanide series of macrocyclic DOTA complexes: insights into the design of contrast agents for magnetic resonance imaging. Inorg Chem 42:148–157. doi:10.1021/ic025790n

    Article  Google Scholar 

  • Bertini I, Luchinat C (1999) New applications of paramagnetic NMR in chemical biology. Curr Opin Chem Biol 3:145–151. doi:10.1016/S1367-5931(99)80026-X

    Article  Google Scholar 

  • Bertini I, Janik MBL, Lee YM, Luchinat C, Rosato A (2001) Magnetic susceptibility tenser anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188. doi:10.1021/ja0028626

    Article  Google Scholar 

  • Bleaney B (1972) Nuclear magnetic-resonance shifts in solution due to lanthanide ions. J Magn Reson 8:91–100. doi:10.1016/0022-2364(72)90027-3

    ADS  Google Scholar 

  • Cacheris WP, Nickle SK, Sherry AD (1987) Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N,N’,N’’-triacetic acid and 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”‘-tetraaceticacid. Inorg Chem 26:958–960. doi:10.1021/ic00253a038

    Article  Google Scholar 

  • Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481. doi:10.1016/0730-725X(90)90055-7

    Article  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. doi:10.1021/cr980440x

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837. doi:10.1021/Ja9812610

    Article  Google Scholar 

  • de Boer JWM, Sakkers PJD, Hilbers CW, de Boer E (1977) Lanthanide shift-reagents. II. Shift mechanisms. J Magn Reson 25:455–476. doi:10.1016/0022-2364(77)90209-8

    ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  Google Scholar 

  • Djanashvili K, Peters JA (2007) How to determine the number of inner-sphere water molecules in lanthanide(III) complexes by 17O NMR spectroscopy. A technical note. Contrast Media Mol Imaging 2:67–71. doi:10.1002/cmmi.132

    Article  Google Scholar 

  • Graham B et al (2011) DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconjug Chem 22:2118–2125. doi:10.1021/bc200353c

    Article  Google Scholar 

  • Häussinger D, Huang JR, Grzesiek S (2009) DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc 131:14761–14767. doi:10.1021/ja903233w

    Article  Google Scholar 

  • Hoeft S, Roth K (1993) Struktur und dynamik von lanthanoid-tetraazacyclododecantetraacetat-(DOTA-)komplexen in Lösung. Chem Ber 126:869–873. doi:10.1002/cber.19931260404

    Article  Google Scholar 

  • Horrocks WD, Sudnick DR (1979) Lanthanide ion probes of structure in biology—laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water-molecules. J Am Chem Soc 101:334–340. doi:10.1021/ja00496a010

    Article  Google Scholar 

  • Huang Y, Coman D, Ali MM, Hyder F (2015) Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS). Contrast Media Mol Imaging 10:51–58. doi:10.1002/cmmi.1604

    Article  Google Scholar 

  • Jacques V, Desreux JF (1994) Quantitative two-dimensional EXSY spectroscopy and dynamic behavior of a paramagnetic lanthanide macrocyclic chelate: YbDOTA (DOTA=1,4,7,10-tetraazacyclododecane-N,N’,N”,N”‘-tetraacetic acid. Inorg Chem 33:4048–4053. doi:10.1021/ic00096a033

    Article  Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191. doi:10.1021/ja0564259

    Article  Google Scholar 

  • Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293. doi:10.1021/ja0725201

    Article  Google Scholar 

  • Krchová T, Kotek J, Jirák D, Havličková J, Císařová I, Hermann P (2013) Lanthanide(III) complexes of aminoethyl-DO3A as PARACEST contrast agents based on decoordination of the weakly bound amino group. Dalton Trans 42:15735–15747. doi:10.1039/c3dt52031e

    Article  Google Scholar 

  • Krchová T, Gálisová A, Jirák D, Hermann P, Kotek J (2016) Ln(III)-complexes of a DOTA analogue with an ethylenediamine pendant arm as pH-responsive PARACEST contrast agents. Dalton Trans 45:3486–3496. doi:10.1039/c5dt04443j

    Article  Google Scholar 

  • Kumar K, Chang CA, Tweedle MF (1993) Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates. Inorg Chem 32:587–593. doi:10.1021/ic00057a017

    Article  Google Scholar 

  • Lee MD et al (2015) Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci 6:2614–2624. doi:10.1039/c4sc03892d

    Article  Google Scholar 

  • Lee MD, Dennis ML, Swarbrick JD, Graham B (2016) Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Chem Commun (Camb) 52:7597–7954. doi:10.1039/c6cc02325h

    Google Scholar 

  • Liu WM et al (2012) A pH-sensitive, colorful, lanthanide-chelating paramagnetic NMR probe. J Am Chem Soc 134:17306–17313. doi:10.1021/ja307824e

    Article  Google Scholar 

  • Manus LM, Strauch RC, Hung AH, Eckermann AL, Meade TJ (2012) Analytical methods for characterizing magnetic resonance probes. Anal Chem 84:6278–6287. doi:10.1021/ac300527z

    Article  Google Scholar 

  • McGarvey BR (1979) Temperature-dependence of the pseudo-contact shift in lanthanide shift-reagents. J Magn Reson 33:445–455. doi:10.1016/0022-2364(79)90261-0

    ADS  Google Scholar 

  • Meyer M, Dahaoui-Gindrey V, Lecomte C, Guilard L (1998) Conformations and coordination schemes of carboxylate and carbamoyl derivatives of the tetraazamacrocycles cyclen and cyclam and the relation to their protonation states. Coord Chem Rev 178:1313–1405. doi:10.1016/S0010-8545(98)00169-6

    Article  Google Scholar 

  • Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14. doi:10.1016/j.sbi.2007.01.009

    Article  Google Scholar 

  • Müntener T, Häussinger D, Selenko P, Theillet FX (2016) In-cell protein structures from 2D NMR experiments. J Phys Chem Lett 7:2821–2825. doi:10.1021/acs.jpclett.6b01074

    Article  Google Scholar 

  • Opina ACL, Wu Y, Zhao P, Kiefer G, Sherry AD (2011) The pH sensitivity of –NH exchange in LnDOTA-tetraamide complexes varies with amide substituent. Contrast Media Mol Imaging 6:459–464. doi:10.1002/cmmi.445

    Article  Google Scholar 

  • Opina AC, Strickland M, Lee YS, Tjandra N, Byrd AR, Swenson RE, Vasalatiy O (2016) Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies. Dalton Trans 45:4673–4687. doi:10.1039/c5dt03210e

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  Google Scholar 

  • Pinkerton AA, Rossier M, Spiliadis S (1985) Lanthanide-induced contact shifts—the average electron-spin polarization. Theory Exp J Magn Reson 64:420–425. doi:10.1016/0022-2364(85)90104-0

    ADS  Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212. doi:10.1021/ar050087z

    Article  Google Scholar 

  • Ranganathan RS, Raju N, Fan H, Zhang X, Tweedle MF, Desreux JF, Jacques V (2002) Polymethylated DOTA ligands. 2. Synthesis of rigidified lanthanide chelates and studies on the effect of alkyl substitution on conformational mobility and relaxivity. Inorg Chem 41:6856–6866. doi:10.1021/ic025695e

    Article  Google Scholar 

  • Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16. doi:10.1002/mrc.1811

    Article  Google Scholar 

  • Rudovský J et al (2005) Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate. Chemistry 11:2373–2384. doi:10.1002/chem.200400367

    Article  Google Scholar 

  • Schrödinger L (2010) The PyMOL molecular graphics system. Version 1.5. Schrödinger LLC, New York

    Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Res Spectrosc 48:47–62. doi:10.1016/j.pnmrs.2005.10.001

    Article  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696. doi:10.1002/prot.20449

    Article  Google Scholar 

  • Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. doi:10.1016/j.pnmrs.2013.02.001

    Article  Google Scholar 

  • Woods M, Sherry AD (2003) Synthesis and luminescence studies of aryl substituted tetraamide complexes of europium(III): a new approach to pH responsive luminescent europium probes. Inorg Chem 42:4401–4408. doi:10.1021/ic0300823

    Article  Google Scholar 

  • Woods M, Kovacs Z, Zhang S, Sherry AD (2003) Towards the rational design of magnetic resonance imaging contrast agents: isolation of the two coordination isomers of lanthanide DOTA-type complexes. Angew Chem Int Ed Engl 42:5889–5892. doi:10.1002/anie.200352234

    Article  Google Scholar 

  • Woods M, Botta M, Avedano S, Wang J, Sherry AD (2005) Towards the rational design of MRI contrast agents: a practical approach to the synthesis of gadolinium complexes that exhibit optimal water exchange. Dalton Trans 24:3829–3837. doi:10.1039/b510778d

    Article  Google Scholar 

  • Woods M et al (2011) Investigations into whole water, prototropic and amide proton exchange in lanthanide(III) DOTA-tetraamide chelates. Dalton Trans 40:6759–6764. doi:10.1039/c1dt10616c

    Article  Google Scholar 

  • Yang F, Wang X, Pan B-B, Su XC (2016) Single-armed phenylsulfonated pyridine derivative of DOTA is a rigid and stable paramagnetic tag in protein analysis. Chem Commun (Camb). doi:10.1039/C6CC06114A

    Google Scholar 

  • Zhang S, Winter P, Wu K, Sherry AD (2001a) A novel europium(III)-based MRI contrast agent. J Am Chem Soc 123:1517–1518. doi:10.1021/ja005820q

    Article  Google Scholar 

  • Zhang S, Wu K, Biewer MC, Sherry AD (2001b) 1H and 17O NMR detection of a lanthanide-bound water molecule at ambient temperatures in pure water as solvent. Inorg Chem 40:4284–4290. doi:10.1021/ic0003877

    Article  Google Scholar 

  • Zhang S, Michaudet S, Burgess S, Sherry AD (2002) The amide protons of an ytterbium(III) dota tetraamide complex act as efficient antennae for transfer of magnetization to bulk water. Angew Chem Int Ed Engl 41:1919–1921. doi:10.1002/1521-3773(20020603)41:11<1919:AID-ANIE1919>3.0.CO;2-Q

    Article  Google Scholar 

  • Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36:783–790. doi:10.1021/ar020228m

    Article  Google Scholar 

Download references

Acknowledgments

The project was funded by the Intramural Research Programs of the National Heart, Lung, and Blood Institute and the Center for Information Technology of the NIH. We also thank Dr. Duck-Yeon Lee of the Biochemical Core Facility, National Heart, Lung, and Blood Institute for expertise and advice regarding mass spectrometry-related experiments. We appreciate the assistance of Dr. James Ferretti in acquiring the 17O NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Tjandra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8598 kb)

Supplementary material 2 (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strickland, M., Schwieters, C.D., Göbl, C. et al. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes. J Biomol NMR 66, 125–139 (2016). https://doi.org/10.1007/s10858-016-0061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0061-x

Keywords

Navigation