Skip to main content
Log in

A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as \(\hbox {C}_{\mathrm{x}} \hbox {H}_{\mathrm{x}}\) and \(\hbox {NH}_{\scriptscriptstyle {\mathrm{N}}}\) or DARR and \(\hbox {NH}_{\scriptscriptstyle {\mathrm{N}}}\), and 3D experiments such as \(\hbox {NC}_\upalpha \hbox {H}_\upalpha\) and \(\hbox {C}_\upalpha \hbox {NH}_{\scriptscriptstyle {\mathrm{N}}}\), or \(\hbox {NC}_\upalpha \hbox {C}_{\mathrm{x}}\) and \(\hbox {C}_\upalpha \hbox {NH}_{\scriptscriptstyle {\mathrm{N}}}\)  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed \(^{1}\hbox {H}\) acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called ‘afterglow’ pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Böckmann A, Meier BH (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53(45):12,253–12,256. doi:10.1002/anie.201405730

    Article  Google Scholar 

  • Andreas LB, Stanek J, Le Marchand T, Bertarello A, Paepe DCD, Lalli D, Krejčíková M, Doyen C, Öster C, Knott B, Wegner S, Engelke F, Felli IC, Pierattelli R, Dixon NE, Emsley L, Herrmann T, Pintacuda G (2015) Protein residue linking in a single spectrum for magic-angle spinning NMR assignment. J Biomol NMR 62(3):253–261. doi:10.1007/s10858-015-9956-1

    Article  Google Scholar 

  • Ardenkjaer-Larsen JH, Boebinger GS, Comment A, Duckett S, Edison AS, Engelke F, Griesinger C, Griffin RG, Hilty C, Maeda H, Parigi G, Prisner T, Ravera E, Van Bentum J, Vega S, Webb A, Luchinat C, Schwalbe H, Frydman L (2015) Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew Chem Int Ed 54(32):9162–9185. doi:10.1002/anie.201410653

    Article  Google Scholar 

  • Banigan JR, Traaseth NJ (2012) Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 116(24):7138–7144. doi:10.1021/jp303269m

    Article  Google Scholar 

  • Banigan JR, Gayen A, Traaseth NJ (2013) Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. J Biomol NMR 55(4):391–399. doi:10.1007/s10858-013-9724-z

    Article  Google Scholar 

  • Bellstedt P, Herbst C, Häfner S, Leppert J, Görlach M, Ramachandran R (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54(4):325–335. doi:10.1007/s10858-012-9680-z

    Article  Google Scholar 

  • Bellstedt P, Ihle Y, Wiedemann C, Kirschstein A, Herbst C, Görlach M, Ramachandran R (2014) Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection. Sci Rep 4(4490):1–7. doi:10.1038/srep04490

    Google Scholar 

  • Chakraborty S, Paul S, Hosur RV (2012) Simultaneous acquisition of \(\text{13C }{\upalpha }\)–15N and 1H–15N–15N sequential correlations in proteins: application of dual receivers in 3D HNN. J Biomol NMR 52(1):5–10. doi:10.1007/s10858-011-9596-z

    Article  Google Scholar 

  • Cho MK, Gayen A, Banigan JR, Leninger M, Traaseth NJ (2014) Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J Am Chem Soc 136(22):8072–8080. doi:10.1021/ja503145x

    Article  Google Scholar 

  • Colvin MT, Silvers R, Frohm B, Su Y, Linse S, Griffin RG (2015) High resolution structural characterization of Aβ 42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 137(23):7509–7518. doi:10.1021/jacs.5b03997

    Article  Google Scholar 

  • Das BB, Opella SJ (2014) Multiple acquisition/multiple observation separated local field/chemical shift correlation solid-state magic angle spinning NMR spectroscopy. J Magn Reson 245:98–104. doi:10.1016/j.jmr.2014.06.011

    Article  ADS  Google Scholar 

  • Das BB, Opella SJ (2016) Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR. J Magn Reson 262:20–26. doi:10.1016/j.jmr.2015.12.004

    Article  ADS  Google Scholar 

  • Das N, Dai J, Hung I, Rajagopalan M, Zhou HX, Cross TA (2015) Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci USA 112(2):E119–E126. doi:10.1073/pnas.1415908112

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax AD (1995) A multidimensional spectral processing system based on pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Equbal A, Bjerring M, Madhu P, Nielsen NC (2015) Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling. Chem Phys Lett 635:339–344. doi:10.1016/j.cplett.2015.07.008

    Article  Google Scholar 

  • Fitzpatrick AWP, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA, Bajaj VS, Jaroniec CP, Wang L, Ladizhansky V, Müller SA, MacPhee CE, Waudby CA, Mott HR, De Simone A, Knowles TPJ, Saibil HR, Vendruscolo M, Orlova EV, Griffin RG, Dobson CM (2013) Atomic structure and hierarchical assembly of a cross-\(\upbeta\) amyloid fibril. Proc Natl Acad Sci USA 110(14):73–5468. doi:10.1073/pnas.1219476110

    Article  Google Scholar 

  • Frueh DP, Vosburg DA, Walsh CT, Wagner G (2006) Determination of all nOes in 1H–13C–Me-ILV-U-2H–15N proteins with two time-shared experiments. J Biomol NMR 34(1):31–40. doi:10.1007/s10858-005-5338-4

    Article  Google Scholar 

  • Frueh DP, Leed A, Arthanari H, Koglin A, Walsh CT, Wagner G (2009) Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N–13C-ILV methyl labeled proteins. J Biomol NMR 45(3):311–318. doi:10.1007/s10858-009-9372-5

    Article  Google Scholar 

  • Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in \(\upalpha\)-synuclein that determine its membrane-bound behaviour. Nat Commun 5:3827. doi:10.1038/ncomms4827

    Article  ADS  Google Scholar 

  • Gierth P, Codina A, Schumann F, Kovacs H, Kupče E (2015) Fast experiments for structure elucidation of small molecules: hadamard NMR with multiple receivers. Magn Reson Chem 53(11):940–944. doi:10.1002/mrc.4292

    Article  Google Scholar 

  • Goddard TG, Kneller DG (2008) SPARKY 3.114. http://www.cgl.ucsf.edu/home/sparky/

  • Gopinath T, Veglia G (2012) 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins. J Magn Reson 220:79–84. doi:10.1016/j.jmr.2012.04.006

    Article  ADS  Google Scholar 

  • Gopinath T, Veglia G (2012b) Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed 51(11):2731–2735. doi:10.1002/anie.201108132

    Article  Google Scholar 

  • Gopinath T, Veglia G (2013) Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 138(18):184201. doi:10.1063/1.4803126

    Article  ADS  Google Scholar 

  • Gopinath T, Veglia G (2016) Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): how far can we push residual spin polarization in solid-state NMR? J Magn Reson 267:1–8. doi:10.1016/j.jmr.2016.03.001

    Article  ADS  Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2015) Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. J Biomol NMR 62(1):53–61. doi:10.1007/s10858-015-9916-9

    Article  Google Scholar 

  • Gustavsson M, Verardi R, Mullen DG, Mote KR, Traaseth NJ, Gopinath T, Veglia G (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci USA 110(43):17,338–43. doi:10.1073/pnas.1303006110

    Article  Google Scholar 

  • Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55(4):355–367. doi:10.1007/s10858-013-9718-x

    Article  Google Scholar 

  • Herbst C, Riedel K, Ihle Y, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008) MAS solid state NMR of RNAs with multiple receivers. J Biomol NMR 41(3):121–125. doi:10.1007/s10858-008-9247-1

    Article  Google Scholar 

  • Herbst C, Bellstedt P, Görlach M, Ramachandran R (2015) MAS solid state NMR of proteins: simultaneous 15N–13CA and 15N–13CO dipolar recoupling via low-power symmetry-based RF pulse schemes. J Biomol NMR 62(1):7–15. doi:10.1007/s10858-015-9910-2

    Article  Google Scholar 

  • Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A (2015) Site-resolved backbone and side-chain intermediate dynamics in a carbohydrate-binding module protein studied by magic-angle spinning NMR spectroscopy. Chemistry 21(30):10,778–10,785. doi:10.1002/chem.201500856

    Article  Google Scholar 

  • Jain S, Bjerring M, Nielsen NC (2012) Efficient and robust heteronuclear cross-polarization for high-speed-spinning biological solid-state NMR spectroscopy. J Phys Chem Lett 3(6):703–708. doi:10.1021/jz3000905

    Article  Google Scholar 

  • Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109(28):11,095–11,100. doi:10.1073/pnas.1204515109

    Article  Google Scholar 

  • Kupče ER, Freeman R (2011) Parallel receivers and sparse sampling in multidimensional NMR. J Magn Reson 213(1):1–13. doi:10.1016/j.jmr.2011.08.027

    Article  ADS  Google Scholar 

  • Kupče E, Kay LE, Freeman R (2010) Detecting the “afterglow” of 13C NMR in proteins using multiple receivers. J Am Chem Soc 132(51):18,008–18,011. doi:10.1021/ja1080025

    Article  Google Scholar 

  • Leskes M, Madhu PK, Vega S (2008) Supercycled homonuclear dipolar decoupling in solid-state NMR: toward cleaner H1 spectrum and higher spinning rates. J Chem Phys 128(5):052,309. doi:10.1063/1.2834730

    Article  Google Scholar 

  • Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011) Structure calculation from unambiguous long-range amide and methyl 1H–1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133(15):5905–5912. doi:10.1021/ja110222h

    Article  Google Scholar 

  • Lopez JJ, Kaiser C, Asami S, Glaubitz C (2009) Higher sensitivity through selective 13C excitation in solid-state NMR spectroscopy. J Am Chem Soc 131(44):15,970–15,971. doi:10.1021/ja904963n

    Article  Google Scholar 

  • Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of \(\upbeta\)-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):68–1257. doi:10.1016/j.cell.2013.08.035

    Article  Google Scholar 

  • Lu M, Hou G, Zhang H, Suiter CL, Ahn J, Byeon IJL, Perilla JR, Langmead CJ, Hung I, Gor’kov PL, Gan Z, Brey W, Aiken C, Zhang P, Schulten K, Gronenborn AM, Polenova T (2015) Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc Natl Acad Sci USA 112(47):14,617–14,622. doi:10.1073/pnas.1516920112

    Article  Google Scholar 

  • Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C (2015) Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR. J Am Chem Soc 137(28):9032–9043. doi:10.1021/jacs.5b03606

    Article  Google Scholar 

  • Mao J, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C (2014) Structural basis of the green–blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 136(50):17,578–17,590. doi:10.1021/ja5097946

    Article  Google Scholar 

  • Martineau C, Decker F, Engelke F, Taulelle F (2013) Parallelizing acquisitions of solid-state NMR spectra with multi-channel probe and multi-receivers: applications to nanoporous solids. Solid State Nucl Magn Reson 55–56:48–53. doi:10.1016/j.ssnmr.2013.08.001

    Article  Google Scholar 

  • Mithu VS, Sarkar B, Bhowmik D, Das AK, Chandrakesan M, Maiti S, Madhu PK (2014) Curcumin alters the salt bridge-containing turn region in amyloid-\(\upbeta\)(1–42) aggregates. J Biol Chem 289(16):11,122–11,131. doi:10.1074/jbc.M113.519447

    Article  Google Scholar 

  • Mobli M, Hoch JC (2014) Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Reson Spectrosc 83:21–41. doi:10.1016/j.pnmrs.2014.09.002

    Article  Google Scholar 

  • Mote KR, Madhu PK (2015) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. J Magn Reson 261:149–156. doi:10.1016/j.jmr.2015.10.016

    Article  ADS  Google Scholar 

  • Mote KR, Gopinath T, Veglia G (2013) Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. J Biomol NMR 57(2):91–102. doi:10.1007/s10858-013-9766-2

    Article  Google Scholar 

  • Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC, Meier BH (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52(4):283–288. doi:10.1007/s10858-012-9616-7

    Article  Google Scholar 

  • Niu Z, Zhao W, Zhang Z, Xiao F, Tang X, Yang J (2014) The molecular structure of alzheimer \(\upbeta\)-amyloid fibrils formed in the presence of phospholipid vesicles. Angew Chem Int Ed 53(35):9294–9297. doi:10.1002/anie.201311106

    Article  Google Scholar 

  • Reddy JG, Hosur RV (2013) Parallel acquisition of 3D-HA(CA)NH and 3D-HACACO spectra. J Biomol NMR 56(2):77–84. doi:10.1007/s10858-013-9735-9

    Article  Google Scholar 

  • Sarkar B, Mithu VS, Chandra B, Mandal A, Chandrakesan M, Bhowmik D, Madhu PK, Maiti S (2014) Significant structural differences between transient amyloid-\(\upbeta\) oligomers and less-toxic fibrils in regions known to harbor familial Alzheimer’s mutations. Angew Chem Int Ed 53(27):6888–6892. doi:10.1002/anie.201402636

    Article  Google Scholar 

  • Sattler M, Maurer M, Schleucher J, Griesinger C (1995) A simultaneous 15N,1H- and 13C,1H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J Biomol NMR 5(1):97–102. doi:10.1007/BF00227475

    Article  Google Scholar 

  • Sørensen OW (1990) Aspects and prospects of multidimensional time-domain spectroscopy. J Magn Reson 89(1):210–216. doi:10.1016/0022-2364(90)90178-C

    ADS  Google Scholar 

  • Thakur RS, Kurur ND, Madhu PK (2006) Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR. Chem Phys Lett 426(4–6):459–463. doi:10.1016/j.cplett.2006.06.007

    Article  ADS  Google Scholar 

  • Ullrich SJ, Hölper S, Glaubitz C (2014) Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd-complexes for solid-state NMR spectroscopy. J Biomol NMR 58(1):27–35. doi:10.1007/s10858-013-9800-4

    Article  Google Scholar 

  • van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30. doi:10.1109/MCSE.2011.37

    Article  Google Scholar 

  • Viegas A, Viennet T, Yu TY, Schumann F, Bermel W, Wagner G, Etzkorn M (2016) UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection. J Biomol NMR. doi:10.1007/s10858-015-0008-7

    Google Scholar 

  • Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated LeeGoldburg experiment. Chem Phys Lett 314(5–6):443–450. doi:10.1016/S0009-2614(99)01174-4

    Article  ADS  Google Scholar 

  • Wang S, Ra Munro, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10(10):1007–1012. doi:10.1038/nmeth.2635

    Article  Google Scholar 

  • Wang S, Parthasarathy S, Xiao Y, Nishiyama Y, Long F, Matsuda I, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y (2015) Nano-mole scale sequential signal assignment by 1H-detected protein solid-state NMR. Chem Commun 51(81):15,055–15,058. doi:10.1039/C5CC04618A

    Article  Google Scholar 

  • Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in 13C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing 1H T1 relaxation. J Magn Reson 184(2):350–356. doi:10.1016/j.jmr.2006.10.012

    Article  ADS  Google Scholar 

  • Wiedemann C, Bellstedt P, Kirschstein A, Häfner S, Herbst C, Görlach M, Ramachandran R (2014) Sequential protein NMR assignments in the liquid state via sequential data acquisition. J Magn Reson 239:23–28. doi:10.1016/j.jmr.2013.12.002

    Article  ADS  Google Scholar 

  • Würtz P, Aitio O, Hellman M, Permi P (2007) Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping. J Biomol NMR 39(2):97–105. doi:10.1007/s10858-007-9178-2

    Article  Google Scholar 

  • Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129(38):11,791–11,801. doi:10.1021/ja073462m

    Article  Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem 46(44):8532–8535. doi:10.1002/ange.200702905

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National NMR Facility at TIFR, Mumbai, where all the experiments were done, Manoj Naik (TIFR, Mumbai) for technical assistance and Bappaditya Chandra (TIFR, Mumbai) and Prof. Sudipta Maiti (TIFR, Mumbai) for sharing the amyloid-\(\upbeta\) samples. Dr. Vipin Agarwal (TCIS, TIFR, Hyderabad) is thanked for discussions. KRM acknowledges TCIS, TIFR, Hyderabad, for support under the Young Researcher Programme and The Department of Science and Technology (DST), India, for funding under the Inspire Faculty Scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Perunthiruthy K. Madhu or Kaustubh R. Mote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Madhu, P.K. & Mote, K.R. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. J Biomol NMR 65, 127–141 (2016). https://doi.org/10.1007/s10858-016-0043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0043-z

Keywords

Navigation