Skip to main content
Log in

Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D 13C-resolved HMQC–NOESY–HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghajanian S, Worrall DM (2002) Identification and characterization of the gene encoding the human phosphopantetheine adenylyltransferase and dephospho-CoA kinase bifunctional enzyme (CoA synthase). Biochem J 365:13–18. doi:10.1042/BJ20020569

    Article  Google Scholar 

  • Ayala I, Sounier R, Usé N et al (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119. doi:10.1007/s10858-008-9294-7

    Article  Google Scholar 

  • Chao F-A, Kim J, Xia Y et al (2014) FLAMEnGO 2.0: an enhanced fuzzy logic algorithm for structure-based assignment of methyl group resonances. J Magn Reson 245:17–23. doi:10.1016/j.jmr.2014.04.012

    Article  ADS  Google Scholar 

  • Conte LL, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198. doi:10.1006/jmbi.1998.2439

    Article  Google Scholar 

  • Crublet E, Kerfah R, Mas G et al (2014) A cost-effective protocol for the parallel production of libraries of 13CH3-specifically labeled mutants for NMR studies of high molecular weight proteins. In: Chen YW (ed) Structural genomics. Humana Press, Totowa, pp 229–244

    Chapter  Google Scholar 

  • Daugherty M, Polanuyer B, Farrell M et al (2002) Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem 277:21431–21439. doi:10.1074/jbc.M201708200

    Article  Google Scholar 

  • Fischer M, Kloiber K, Häusler J et al (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. ChemBioChem 8:610–612. doi:10.1002/cbic.200600551

    Article  Google Scholar 

  • Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600. doi:10.1021/ja9706514

    Article  Google Scholar 

  • Geerlof A, Lewendon A, Shaw W (1999) Purification and characterization of phosphopantetheine adenylyltransferase form Escherichia coli. J Biol Chem 274:27105–27111. doi:10.1074/jbc.274.38.27105

    Article  Google Scholar 

  • Gelis I, Bonvin AMJJ, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi:10.1016/j.cell.2007.09.039

    Article  Google Scholar 

  • Godoy-Ruiz R, Guo C, Tugarinov V (2010) Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc 132:18340–18350. doi:10.1021/ja1083656

    Article  Google Scholar 

  • Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592. doi:10.1016/S0959-440X(00)00135-4

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA et al (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374. doi:10.1023/A:1008393201236

    Article  Google Scholar 

  • Gross JD, Gelev VM, Wagner G (2003) A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J Biomol NMR 25:235–242. doi:10.1023/A:1022890112109

    Article  Google Scholar 

  • Hajduk PJ, Augeri DJ, Mack J et al (2000) NMR-based screening of proteins containing 13C-labeled methyl groups. J Am Chem Soc 122:7898–7904. doi:10.1021/ja000350l

    Article  Google Scholar 

  • Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132:2145–2147. doi:10.1021/ja908004w

    Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB et al (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52:315–327. doi:10.1007/s10858-012-9611-z

    Article  Google Scholar 

  • Isaacson RL, Simpson PJ, Liu M et al (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429. doi:10.1021/ja0761784

    Article  Google Scholar 

  • Izard T (2002) The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme’s catalytic mechanism. J Mol Biol 315:487–495. doi:10.1006/jmbi.2001.5272

    Article  Google Scholar 

  • Izard T (2003) A novel adenylate binding site confers phosphopantetheine adenylyltransferase interactions with coenzyme A. J Bacteriol 185:4074–4080. doi:10.1128/JB.185.14.4074-4080.2003

    Article  Google Scholar 

  • Izard T, Geerlof A (1999) The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. EMBO J 18:2021–2030. doi:10.1093/emboj/18.8.2021

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial. Cantina Verlag, Goldau

    Google Scholar 

  • Kerfah R, Hamelin O, Boisbouvier J, Marion D (2015a) CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample. J Biomol NMR 63:389–402. doi:10.1007/s10858-015-9998-4

    Article  Google Scholar 

  • Kerfah R, Plevin MJ, Pessey O et al (2015b) Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs. J Biomol NMR 61:73–82. doi:10.1007/s10858-014-9887-2

    Article  Google Scholar 

  • Kerfah R, Plevin MJ, Sounier R et al (2015c) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122. doi:10.1016/j.sbi.2015.03.009

    Article  Google Scholar 

  • Leonardi R, Zhang Y, Rock C, Jackowski S (2005) Coenzyme A: back in action. Prog Lipid Res 44:125–153. doi:10.1016/j.plipres.2005.04.001

    Article  Google Scholar 

  • Lichtenecker R, Ludwiczek ML, Schmid W, Konrat R (2004) Simplification of protein NOESY spectra using bioorganic precursor synthesis and NMR spectral editing. J Am Chem Soc 126:5348–5349. doi:10.1021/ja049679n

    Article  Google Scholar 

  • Miller S, Janin J, Lesk AM, Chothial C (1987) Interior and surface of monomeric proteins. J Mol Biol 196:641–656. doi:10.1016/0022-2836(87)90038-6

    Article  Google Scholar 

  • Miller JR, Ohren J, Sarver RW et al (2007) Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme A biosynthesis. J Bacteriol 189:8196–8205. doi:10.1128/JB.00732-07

    Article  Google Scholar 

  • Pedrini B, Serrano P, Mohanty B et al (2013) NMR-profiles of protein solutions. Biopolymers 99:825–831. doi:10.1002/bip.22348

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371. doi:10.1073/pnas.94.23.12366

    Article  ADS  Google Scholar 

  • Religa TL, Kay LE (2010) Optimal methyl labeling for studies of supra-molecular systems. J Biomol NMR 47:163–169. doi:10.1007/s10858-010-9419-7

    Article  Google Scholar 

  • Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102. doi:10.1126/science.1184991

    Article  ADS  Google Scholar 

  • Saio T, Guan X, Rossi P et al (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494. doi:10.1126/science.1250494

    Article  Google Scholar 

  • Schanda P, Kupče Ē, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211. doi:10.1007/s10858-005-4425-x

    Article  Google Scholar 

  • Schrödinger LLC (2015) The {PyMOL} molecular graphics system, Version ~1.8

  • Sounier R, Blanchard L, Wu Z, Boisbouvier J (2007) High-accuracy distance measurement between remote methyls in specifically protonated proteins. J Am Chem Soc 129:472–473. doi:10.1021/ja067260m

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512

    Article  Google Scholar 

  • Spry C, Kirk K, Saliba KJ (2008) Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 32:56–106. doi:10.1111/j.1574-6976.2007.00093.x

    Article  Google Scholar 

  • Stoffregen MC, Schwer MM, Renschler FA, Wiesner S (2012) Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure 20:573–581. doi:10.1016/j.str.2012.02.012

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003a) Side chain assignments of Ile δ1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc 125:5701–5706. doi:10.1021/ja021452+

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003b) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878. doi:10.1021/ja030345s

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. doi:10.1021/ja030153x

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146. doi:10.1146/annurev.biochem.73.011303.074004

    Article  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005) High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775. doi:10.1021/ja044032o

    Article  Google Scholar 

  • Tzeng S-R, Pai M-T, Kalodimos CG (2012) NMR studies of large protein systems. In: Shekhtman A, Burz DS (eds) Methods Mol Biol. Humana Press, Totowa, pp 133–140

    Google Scholar 

  • Velyvis A, Schachman HK, Kay LE (2009) Assignment of Ile, Leu, and Val methyl correlations in supra-molecular systems: an application to aspartate transcarbamoylase. J Am Chem Soc 131:16534–16543. doi:10.1021/ja906978r

    Article  Google Scholar 

  • Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of 2H, 13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One 7:e43725. doi:10.1371/journal.pone.0043725

    Article  ADS  Google Scholar 

  • Xu Y, Matthews S (2013a) TROSY NMR spectroscopy of large soluble proteins. Top Curr Chem 335:97–120. doi:10.1007/128_2011_228

    Article  Google Scholar 

  • Xu Y, Matthews S (2013b) MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. J Biomol NMR 55:179–187. doi:10.1007/s10858-012-9700-z

    Article  Google Scholar 

  • Xu Y, Liu M, Simpson PJ et al (2009) Automated assignment in selectively methyl-labeled proteins. J Am Chem Soc 131:9480–9481. doi:10.1021/ja9020233

    Article  Google Scholar 

  • Yamazaki T, Lee W, Arrowsmith CH et al (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666. doi:10.1021/ja00105a005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Clemens Anklin and Dr. Eric Johnson at the Bruker BioSpin Corporation for their assistance with the implementation of the 4D methyl–methyl 13C-resolved HMQC–NOESY–HMQC experiment, Dr. Lili Xie and Kyoko Uehara for their help in designing the purification protocol for CoaD, and Dr. Dirksen Bussiere for his assistance with refinement of the CoaD structure. All images produced of the CoaD structure were done so using Pymol (Schrödinger, LLC 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lingel.

Ethics declarations

Conflict of interest

AP, AOF, FR, MM and AL are employees of Novartis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proudfoot, A., Frank, A.O., Ruggiu, F. et al. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. J Biomol NMR 65, 15–27 (2016). https://doi.org/10.1007/s10858-016-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0032-2

Keywords

Navigation