Skip to main content
Log in

Algal autolysate medium to label proteins for NMR in mammalian cells

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in 15N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23:345–356

    Article  Google Scholar 

  • Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250

    Article  Google Scholar 

  • Banci L, Barbieri L, Bertini I, Cantini F, Luchinat E (2011) In-cell NMR in E. coli to monitor maturation steps of hSOD1. PLoS One 6:e23561

    Article  ADS  Google Scholar 

  • Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR (2013a) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9:297–299

    Article  Google Scholar 

  • Banci L, Barbieri L, Luchinat E, Secci E (2013b) Visualization of redox-controlled protein fold in living cells. Chem Biol 20:747–752

    Article  Google Scholar 

  • Bertrand K, Reverdatto S, Burz DS, Zitomer R, Shekhtman A (2012) Structure of proteins in eukaryotic compartments. J Am Chem Soc 134:12798–12806

    Article  Google Scholar 

  • Bussow K (2015) Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 32:81–90

    Article  Google Scholar 

  • Dutta A, Saxena K, Schwalbe H, Klein-Seetharaman J (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69

    Article  Google Scholar 

  • Egorova-Zachernyuk TA, Bosman GJ, Pistorius AM, Degrip WJ (2009) Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture. Appl Microbiol Biotechnol 84:575–581

    Article  Google Scholar 

  • Egorova-Zachernyuk TA, Bosman GJ, Degrip WJ (2011) Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Appl Microbiol Biotechnol 89:397–406

    Article  Google Scholar 

  • Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophys 43:171–192

    Article  Google Scholar 

  • Freshney R (1987) Culture of animal cells: a manual of basic technique. Alan R. Liss Inc, New York

    Google Scholar 

  • Hänsel R, Folfynovà-Trantirkovà S, Löhr F, Buck J, Bongartz E, Bamberg E, Schwabe H, Dötsch V, Trantìrek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768

    Article  Google Scholar 

  • Hänsel R, Luh LM, Corbeski I, Trantirek L, Dotsch V (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 53:10300–10314

    Article  Google Scholar 

  • Hansen AP, Petros AM, Mazar AP, Pederson TM, Rueter A, Fesik SW (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31:12713–12718

    Article  Google Scholar 

  • Hosseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem 13:1231–1237

    Article  Google Scholar 

  • Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hirokai H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109

    Article  ADS  Google Scholar 

  • Ishimi Y, Sugiyama F, Ezaki J, Fujioka M, Wu J (2006) Effects of spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice. Biosci Biotechnol Biochem 70:363–368

    Article  Google Scholar 

  • Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6:373–379

    Article  Google Scholar 

  • Kubo S, Nishida N, Udagawa Y, Takarada O, Ogino S, Shimada I (2013) A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew Chem Int Ed Engl 52:1208–1211

    Article  Google Scholar 

  • Luchinat E, Barbieri L, Rubino JT, Kozyreva T, Cantini F, Banci L (2014) In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat Commun 5:5502

    Article  ADS  Google Scholar 

  • Luh LM, Hänsel R, Lohr F, Kirchner DK, Krauskopf K, Pitzius S, Schafer B, Tufar P, Corbeski I, Guntert P, Dotsch V (2013) Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition. J Am Chem Soc 135:13796–13803

    Article  Google Scholar 

  • McClatchy DB, Dong MQ, Wu CC, Venable JD, Yates JR III (2007) 15N metabolic labeling of mammalian tissue with slow protein turnover. J Proteome Res 6:2005–2010

    Article  Google Scholar 

  • Meyer S, Lorenz C, Baser B, Wordehoff M, Jager V, van den Heuvel J (2013) Multi-host expression system for recombinant production of challenging proteins. PLoS One 8:e68674

    Article  ADS  Google Scholar 

  • Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237

    Article  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR Spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  Google Scholar 

  • Seiradake E, Zhao Y, Lu W, Aricescu AR, Jones EY (2015) Production of cell surface and secreted glycoproteins in mammalian cells. Methods Mol Biol 1261:115–127

    Article  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  Google Scholar 

  • Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103:11904–11909

    Article  ADS  Google Scholar 

  • Smith AE, Zhang Z, Pielak GJ, Li C (2015) NMR studies of protein folding and binding in cells and cell-like environments. Curr Opin Struct Biol 30:7–16

    Article  Google Scholar 

  • Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36

    Article  Google Scholar 

  • Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53

    Article  Google Scholar 

  • Wong VW, Reid DG, Chow WY, Rajan R, Green M, Brooks RA, Duer MJ (2015) Preparation of highly and generally enriched mammalian tissues for solid state NMR. J Biomol NMR 63:119–123

    Article  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  Google Scholar 

  • Wurm F, Bernard A (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 10:156–159

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR—Project: BIOLABEL “Valorizzazione della biomassa algale per la marcatura isotopica delle biomolecole”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fragai.

Additional information

Carmelo Fuccio and Enrico Luchinat have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuccio, C., Luchinat, E., Barbieri, L. et al. Algal autolysate medium to label proteins for NMR in mammalian cells. J Biomol NMR 64, 275–280 (2016). https://doi.org/10.1007/s10858-016-0026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0026-0

Keywords

Navigation