Skip to main content

Advertisement

Log in

Fast multi-dimensional NMR acquisition and processing using the sparse FFT

Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoto PC, Fenwick RB, Kroon GJA, Wright PE (2014) Accurate scoring of non-uniform sampling schemes for quantitative NMR. J Magn Reson 246:31–35. doi:10.1016/j.jmr.2014.06.020

    Article  ADS  Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    ADS  Google Scholar 

  • Billeter M, Orekhov VY (2012) Preface: fast NMR methods are here to stay. In: Billeter M, Orekhov VY (eds) Novel sampling approaches in higher dimensional NMR, vol 316. Springer, Heidelberg, pp ix–xiv

    Chapter  Google Scholar 

  • Bodenhausen G, Ernst RR (1981) The accordion experiment, a simple approach to 3-dimensional NMR spectroscopy. J Magn Reson 45:367–373. doi:10.1016/0022-2364(81)90137-2

    ADS  Google Scholar 

  • Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9:198–217

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bretthorst GL (1990) Bayesian-analysis. 1. Parameter-estimation using quadrature NMR models. J Magn Reson 88:533–551. doi:10.1016/0022-2364(90)90287-j

    ADS  Google Scholar 

  • Chylla RA, Markley JL (1995) Theory and application of the maximum-likelihood principle to NMR parameter-estimation of multidimensional NMR data. J Biomol NMR 5:245–258

    Article  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Res Spectrosc 57:381–419. doi:10.1016/j.pnmrs.2010.07.001

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536. doi:10.1021/ja052120i

    Article  Google Scholar 

  • Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113. doi:10.1023/a:1024960302926

    Article  Google Scholar 

  • Frey MA, Sethna ZM, Manley GA, Sengupta S, Zilm KW, Loria JP, Barrett SE (2013) Accelerating multidimensional NMR and MRI experiments using iterated maps. J Magn Reson 237:100–109. doi:10.1016/j.jmr.2013.09.005

    Article  ADS  Google Scholar 

  • Ghazi B, Hassanieh H, Indyk P, Katabi D, Price E, Shi L (2013) Sample-optimal average-case sparse Fourier transform in two dimensions. In: 51st annual Allerton conference on communication, control, and computing, October 2013

  • Hassanieh H, Indyk P, Katabi D, Price E (2012a) Nearly optimal sparse fourier transform. In: The 44th symposium on theory of computing, STOC

  • Hassanieh H, Indyk P, Katabi D, Price E (2012b) Simple and practical algorithm for sparse fourier transform. In: Twenty-third annual ACM-SIAM symposium on discrete algorithms, SODA

  • Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881. doi:10.1073/pnas.0504818102

    Article  ADS  Google Scholar 

  • Hiller S, Wasmer C, Wider G, Wuthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828. doi:10.1021/ja072564+

    Article  Google Scholar 

  • Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS (2014) Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. Acc Chem Res 47:708–717. doi:10.1021/ar400244v

    Article  Google Scholar 

  • Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem Int Ed 50:6548–6551. doi:10.1002/anie.201100440

    Article  Google Scholar 

  • Hyberts SG, Arthanari H, Robson SA, Wagner G (2014) Perspectives in magnetic resonance: NMR in the post-FFT era. J Magn Reson 241:60–73. doi:10.1016/j.jmr.2013.11.014

    Article  ADS  Google Scholar 

  • Jaravine VA, Orekhov VY (2006) Targeted acquisition for real-time NMR spectroscopy. J Am Chem Soc 128:13421–13426. doi:10.1021/Ja062146p

    Article  Google Scholar 

  • Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607. doi:10.1038/Nmeth900

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559. doi:10.1002/anie.201100370

    Article  Google Scholar 

  • Kazimierczuk K, Kozminski W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328. doi:10.1016/j.jmr.2006.02.001

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205:286–292. doi:10.1016/j.jmr.2010.05.012

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440. doi:10.1021/ja049432q

    Article  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169. doi:10.1016/j.jmr.2007.04.002

    Article  ADS  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656. doi:10.1021/ja807893k

    Article  Google Scholar 

  • Mayzel M, Kazimierczuk K, Orekhov VY (2014) The causality principle in the reconstruction of sparse NMR spectra. Chem Commun (Camb) 50:8947–8950. doi:10.1039/C4CC03047H

    Article  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105. doi:10.1016/j.jmr.2006.06.007

    Article  ADS  Google Scholar 

  • Motáčková V, Nováček J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Žídek L, Šanderová H, Krásný L, Koźmiński W, Sklenář V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48:169–177. doi:10.1007/s10858-010-9447-3

    Article  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non--uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292

    Article  Google Scholar 

  • Qu X, Mayzel M, Cai J-F, Chen Z, Orekhov V (2014) Accelerated NMR spectroscopy with low-rank reconstruction. Angew Chem Int Ed. doi:10.1002/anie.201409291

    Google Scholar 

  • Stanek J, Augustyniak R, Koźmiński W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214:91–102. doi:10.1016/j.jmr.2011.10.009

    Article  ADS  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wuthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308. doi:10.1021/ja00073a064

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Research Council (Research Grant 2011-5994); Swedish National Infrastructure for Computing (Grant SNIC 001/12-271). The Swedish NMR Centre is acknowledged for spectrometer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Yu Orekhov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanieh, H., Mayzel, M., Shi, L. et al. Fast multi-dimensional NMR acquisition and processing using the sparse FFT. J Biomol NMR 63, 9–19 (2015). https://doi.org/10.1007/s10858-015-9952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9952-5

Keywords

Navigation