Skip to main content
Log in

13C- and 1H-detection under fast MAS for the study of poorly available proteins: application to sub-milligram quantities of a 7 trans-membrane protein

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We demonstrate that 13C-detected spectra recorded using fast (60 kHz) magic angle spinning on sub-milligram (<10 μmol) quantities of a protonated 7 trans-membrane helix protein (bacteriorhodopsin) in its native lipid environment are comparable in sensitivity and resolution to those recorded using 15-fold larger sample volumes with conventional solid state NMR methodology. We demonstrate the utility of proton-detected measurements which yield narrow 1H linewidths under these conditions, and that no structural alterations are observed. We propose that these methods will prove useful to gain structural information on membrane proteins with poor availability, which can be studied in their native lipid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agarwal V, Tuherm T, Reinhold A, Past J, Samoson A, Ernst M, Meier BH (2013) Amplitude-modulated low-power decoupling sequences for fast magic-angle spinning NMR. Chem Phys Lett 583:1–7

    Article  ADS  Google Scholar 

  • Agarwal V et al (2014) De Novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256

    Article  Google Scholar 

  • Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497

    Article  Google Scholar 

  • Bennett AE, Griffin RG, Ok JH, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624

    Article  ADS  Google Scholar 

  • Berthoumieu O, Patil AV, Xi W, Aslimovska L, Davis JJ, Watts A (2011) Molecular scale conductance photoswitching in engineered bacteriorhodopsin. Nano Lett 12:899–903

    Article  ADS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E (2013) SedNMR: on the edge between solution and solid-state NMR. Acc Chem Res 46:2059–2069

    Article  Google Scholar 

  • Bill RM et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotech 29:335–340

    Article  Google Scholar 

  • Böckmann A (2007) High-resolution solid-state MAS NMR of proteins—Crh as an example. Magn Reson Chem 45:S24–S31

    Article  Google Scholar 

  • Cross TA, Sharma M, Yi M, Zhou H-X (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36:117–125

    Article  Google Scholar 

  • Dvinskikh SV, Castro V, Sandström D (2004) Heating caused by radiofrequency irradiation and sample rotation in 13C magic angle spinning NMR studies of lipid membranes. Magn Reson Chem 42:875–881

    Article  Google Scholar 

  • Ernst M, Samoson A, Meier BH (2001) Low-power decoupling in fast magic-angle spinning NMR. Chem Phys Lett 348:293–302

    Article  ADS  Google Scholar 

  • Ernst M, Meier MA, Tuherm T, Samoson A, Meier BH (2004) Low-power high-resolution solid-state NMR of peptides and proteins. J Am Chem Soc 126:4764–4765

    Article  Google Scholar 

  • Guo C, Hou G, Lu X, O’Hare B, Struppe J, Polenova T (2014) Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. J Biomol NMR 60:219–229

    Article  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  Google Scholar 

  • Higman VA, Varga K, Aslimovska L, Judge PJ, Sperling LJ, Rienstra CM, Watts A (2011) The conformation of bacteriorhodopsin loops in purple membranes resolved by solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50:8432–8435

    Article  Google Scholar 

  • Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    Article  ADS  Google Scholar 

  • Knight MJ et al (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 123:11901–11905

    Article  Google Scholar 

  • Laage S, Sachleben JR, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L (2009) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196:133–141

    Article  ADS  Google Scholar 

  • Langer B, Schnell I, Spiess HW, Grimmer A-R (1999) Temperature calibration under ultrafast MAS conditions. J Magn Reson 138:182–186

    Article  ADS  Google Scholar 

  • Lewandowski JR, Dumez J-N, Akbey Ü, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211

    Article  Google Scholar 

  • Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011a) Structure calculation from unambiguous long-range amide and methyl 1H–1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912

    Article  Google Scholar 

  • Linser R et al (2011b) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed 50:4508–4512

    Article  Google Scholar 

  • Marchetti A et al (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 124:10914–10917

    Article  Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  MathSciNet  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  Google Scholar 

  • Rasmussen SGF et al (2007) Crystal structure of the human [bgr]2 adrenergic g-protein-coupled receptor. Nature 450:383–387

    Article  ADS  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  ADS  Google Scholar 

  • Silva J, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44:89–113

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tang M, Comellas G, Rienstra CM (2013) Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 46:2080–2088

    Article  Google Scholar 

  • Ullrich SJ, Hölper S, Glaubitz C (2014) Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd3+-complexes for solid-state NMR spectroscopy. J Biomol NMR 58:27–35

    Article  Google Scholar 

  • Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99

    Article  ADS  Google Scholar 

  • Vijayan V, Demers J-P, Biernat J, Mandelkow E, Becker S, Lange A (2009) Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning. Chem Phys Chem 10:2205–2208

    Google Scholar 

  • Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443

    Article  Google Scholar 

  • Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V (2014) High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR 58:37–47

    Article  Google Scholar 

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. BBA-Biomembranes 1808:1957–1974

    Article  Google Scholar 

  • Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4:e5094

    Article  ADS  Google Scholar 

  • Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in 13C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing 1H T1 relaxation. J Magn Reson 184:350–356

    Article  ADS  Google Scholar 

  • Wind RA, Hu JZ, Rommereim DN (2001) High-resolution 1H NMR spectroscopy in organs and tissues using slow magic angle spinning. Magnet Reson Med 46:213–218

    Article  Google Scholar 

  • Wu B et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  ADS  Google Scholar 

  • Zhou Z, Sayer BG, Hughes DW, Stark RE, Epand RM (1999) Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance. Biophys J 76:387–399

    Article  Google Scholar 

  • Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Article  Google Scholar 

  • Zhou DH et al (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383

    Article  Google Scholar 

  • Zhou D et al (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291–305

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Medical Research Council (MRC), the Biotechnology and Biological Sciences Research Council (BBSRC), and the Engineering and Physical Sciences Research Council (EPSRC). We acknowledge the Bio-NMR initiative (EC-FP7 Project Number: 261863) for funding access to the CRMN facility in Lyon where all 60 kHz MAS data was recorded, and we thank Moreno Lelli for his assistance during these visits. We acknowledge the use of the solid state NMR facility at the University of Warwick where preliminary fast spinning NMR data was recorded.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Watts.

Additional information

Hugh R. W. Dannatt and Garrick F. Taylor have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dannatt, H.R.W., Taylor, G.F., Varga, K. et al. 13C- and 1H-detection under fast MAS for the study of poorly available proteins: application to sub-milligram quantities of a 7 trans-membrane protein. J Biomol NMR 62, 17–23 (2015). https://doi.org/10.1007/s10858-015-9911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9911-1

Keywords

Navigation