Skip to main content
Log in

Divide and conquer is always best: sensitivity of methyl correlation experiments

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The HMCM [CG]CBCA experiment (Tugarinov and Kay in J Am Chem Soc 125:13868–13878, 2003) correlates methyl carbon and proton shifts to Cγ, Cβ, and Cα resonances for the purpose of resonance assignments. The relative sensitivity of the HMCM[CG]CBCA sequence experiment is compared to a divide-and-conquer approach to assess whether it is best to collect all of the methyl correlations at once, or to perform separate experiments for each correlation. A straightforward analysis shows that the divide-and-conquer approach is intrinsically more sensitive, and should always be used to obtain methyl-Cγ, Cβ, and Cα correlations. The improvement in signal-to-noise associated with separate experiments is illustrated by the detection of methyl-aliphatic correlations in a 65 kDa protein-DNA complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  Google Scholar 

  • Baldwin AJ, Religa TL, Hansen DF, Bouvignies G, Kay LE (2010) 13CHD2 methyl group probes of millisecond time scale exchange in proteins by 1H relaxation dispersion: an application to proteasome gating residue dynamics. J Am Chem Soc 132(32):10992–10995. doi:10.1021/ja104578n

    Article  Google Scholar 

  • Biswas S, Guharoy M, Chakrabarti P (2009) Dissection, residue conservation, and structural classification of protein-DNA interfaces. Proteins 74:643–654

    Article  Google Scholar 

  • Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS (1998) The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA-protein interactions. Nat Struct Biol 5:393–399

    Article  Google Scholar 

  • Chan PH, Weissbach S, Okon M, Withers SG, McIntosh LP (2012) Nuclear magnetic resonance spectral assignments of α-1,4-galactosyltransferase LgtC from neisseria meningitidis: substrate binding and multiple conformational states. Biochemistry 51:8278–8292

    Article  Google Scholar 

  • Fernandez C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  Google Scholar 

  • Gardner KH, Zhang X, Gehring K, Kay LE (1998) Solution NMR Studies of a 42 KDa Escherichia Coli Maltose Binding Protein/β-Cyclodextrin Complex: chemical Shift Assignments and Analysis. J Am Chem Soc 120(45):11738–11748. doi:10.1021/ja982019w

    Article  Google Scholar 

  • Göbl C, Tjandra N (2012) Application of solution NMR spectroscopy to study protein dynamics. Entropy 14(3):581–598. doi:10.3390/e14030581

    Article  Google Scholar 

  • Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 7:13749–13757

    Article  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. doi:10.1016/j.bbapap.2010.10.012

    Google Scholar 

  • Krejcirikova A, Tugarinov V (2012) 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample. J Biomol NMR 54:135–143. doi:10.1007/s10858-012-9667-9

    Article  Google Scholar 

  • LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27:142–150

    Article  Google Scholar 

  • Markwick PR, Malliavin T, Nilges M (2008) Structural biology by NMR: structure, dynamics, and interactions. PLoS Comput Biol 4(9):e1000168. doi:10.1371/journal.pcbi.1000168

    Article  Google Scholar 

  • McCallum SA, Hitchens TK, Rule GS (1999) Solution structure of the carboxyl terminus of a human class mu glutathione s-transferase: NMR assignment strategies in large proteins. J Mol Biol 285:2119–2132

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228

    Article  ADS  Google Scholar 

  • Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE (2000) Global folds of proteins with low densities of noes using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol 300:197–212

    Article  Google Scholar 

  • Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87. doi:10.1007/s10858-009-9376-1

    Article  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A. 95(23):13585–13590

    Article  ADS  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (2000) NMR Assignment and Secondary Structure Determination of an Octameric 110 kDa Protein Using TROSY in Triple Resonance Experiments. J Am Chem Soc 122:7543–7548. doi:10.1021/ja0003268

    Article  Google Scholar 

  • Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4:1245–1249

    Article  Google Scholar 

  • Shajani Z, Varani G (2007) NMR studies of dynamics in RNA and DNA by 13C relaxation. Biopolymers 86:348–359. doi:10.1002/bip.20650

    Article  Google Scholar 

  • Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50:10189–10191. doi:10.1021/bi201496d

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512

    Article  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Google Scholar 

  • Tugarinov V, Kay LE (2003) Ile, Leu, and Val Methyl Assignments of the 723-Residue Malate Synthase G Using a New Labeling Strategy and Novel NMR Methods. J Am Chem Soc 125:13868–13878. doi:10.1021/ja030345s

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005) Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44:15970–15977. doi:10.1021/bi0519809

    Article  Google Scholar 

  • Tzakos AG, Grace CRR, Lukavsky PJ, Riek R (2006) NMR Techniques for Very Large Proteins and RNAs in Solution. Annu Rev Biophys Biomol Struct 35:319–342

    Article  Google Scholar 

  • Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7(9):e43725. doi:10.1371/journal.pone.0043725

    Article  ADS  Google Scholar 

  • Venditti V, Fawzi NL, Clore GM (2011) Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl–methyl nuclear Overhauser enhancement spectroscopy. J Biomol NMR 51:319–328

    Article  Google Scholar 

  • Wang X, Vu A, Lee K, Dahlquist FW (2012) CheA–Receptor Interaction Sites in Bacterial Chemotaxis. J Mol Biol 422:282–290. doi:10.1016/j.jmb.2012.05.023

    Article  Google Scholar 

  • Xu Y, Matthews S (2013) MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. J Biomol NMR 55:179–187. doi:10.1007/s10858-012-9700-z

    Article  Google Scholar 

  • Zhuravleva A, Clerico EM, Gierasch LM (2012) An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–1307

    Article  Google Scholar 

Download references

Acknowledgments

We thank Virgil Simplaceanu for maintenance of the NMR spectrometers and Dr. C. Sanders (Vanderbilt University) for providing the Bruker code for the HMCM[CG]CBCA experiment. This work was supported by the Mellon College of Science at CMU and an NIH Merit grant 5R37-GM029207 to L.J–J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon S. Rule.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, K., Jen-Jacobson, L. & Rule, G.S. Divide and conquer is always best: sensitivity of methyl correlation experiments. J Biomol NMR 56, 331–335 (2013). https://doi.org/10.1007/s10858-013-9751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9751-9

Keywords

Navigation