Skip to main content
Log in

Fragment-based drug discovery using NMR spectroscopy

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baell JB (2010) Observations on screening-based research and some concerning trends in the literature. Future Med Chem 2:1529–1546

    Article  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  Google Scholar 

  • Becattini B, Pellecchia M (2006) SAR by ILOEs: an NMR-based approach to reverse chemical genetics. Chemistry 12:2658–2662

    Article  Google Scholar 

  • Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N et al (2006) Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci USA 103:12602–12606

    Article  ADS  Google Scholar 

  • Bohm HJ, Florh A, Stahl M (2004) Scaffold hopping. Drug Discov Today 1:217–224

    Google Scholar 

  • Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  ADS  Google Scholar 

  • Borsi V, Calderone V, Fragai M, Luchinat C, Sarti N (2010) Entropic contribution to the linking coefficient in fragment based drug design: a case study. J Med Chem 53:4285–4289

    Article  Google Scholar 

  • Bottcher J, Jestel A, Kiefersauer R, Krapp S, Nagel S, Steinbacher S, Steuber H (2011) Key factors for successful generation of protein-fragment structures requirement on protein, crystals, and technology. Meth Enzymol 493:61–89

    Article  Google Scholar 

  • Campos-Olivas R (2011) NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem 11:43–67

    Article  Google Scholar 

  • Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10:987–992

    Article  Google Scholar 

  • Chessari G, Woodhead AJ (2009) From fragment to clinical candidate–a historical perspective. Drug Discov Today 14:668–675

    Article  Google Scholar 

  • Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT (2009) Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 5:407–413

    Article  Google Scholar 

  • Cioffi M, Hunter CA, Packer MJ, Spitaleri A (2008) Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift. J Med Chem 51:2512–2517

    Article  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  Google Scholar 

  • Constantine KL, Davis ME, Metzler WJ, Mueller L, Claus BL (2006) Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments. J Am Chem Soc 128:7252–7263

    Article  Google Scholar 

  • Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057

    Article  Google Scholar 

  • Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68

    Article  Google Scholar 

  • Dalvit C, Flocco M, Veronesi M, Stockman BJ (2002) Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb Chem High Throughput Screen 5:605–611

    Article  Google Scholar 

  • Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17:643–652

    Article  Google Scholar 

  • Erlanson DA, Wells JA, Braisted AC (2004) Tethering: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33:199–223

    Article  Google Scholar 

  • Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. Chem Phys Chem 10:1356–1368

    Article  Google Scholar 

  • Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148

    Article  Google Scholar 

  • Fernandez C, Jahnke W (2004) New approaches for NMR screening in drug discovery. Drg Discov Today 1:277–283

    Article  Google Scholar 

  • Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog NMR Spec 51:219–242

    Article  Google Scholar 

  • Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET et al (2013) Discovery of potent myeloid cell leukemia 1 (mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56:15–30

    Article  Google Scholar 

  • Guntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143

    Article  ADS  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  Google Scholar 

  • Hajduk PJ, Meadows RP, Fesik SW (1997) Discovering high-affinity ligands for proteins. Science 278(497):499

    Google Scholar 

  • Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000a) NMR-based screening of proteins containing 13C-labeled methyl groups. J Am Chem Soc 122:7898–7904

    Article  Google Scholar 

  • Hajduk PJ, Bures M, Praestgaard J, Fesik SW (2000b) Privileged molecules for protein binding identified from NMR-based screening. J Med Chem 43:3443–3447

    Article  Google Scholar 

  • Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA (2004) SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc 126:2390–2398

    Article  Google Scholar 

  • Hoffer L, Renaud JP, Horvath D (2011) Fragment-based drug design: computational & experimental state of the art. Comb Chem High Throughput Screen 14:500–520

    Article  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  Google Scholar 

  • Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  Google Scholar 

  • Hung AW, Silvestre HL, Wen S, Ciulli A, Blundell TL, Abell C (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed Engl 48:8452–8456

    Article  Google Scholar 

  • Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127:217–224

    Article  Google Scholar 

  • Ichihara O, Barker J, Law RJ, Whittaker M (2011) Compound design by fragment-linking. Mol Inf 30:298–306

    Article  Google Scholar 

  • Jahnke W (2002) Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Chem Bio Chem 3:167–173

    Article  Google Scholar 

  • Jahnke W, Florsheimer A, Blommers MJ, Paris CG, Heim J, Nalin CM, Perez LB (2003) Second-site NMR screening and linker design. Curr Top Med Chem 3:69–80

    Article  Google Scholar 

  • Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78:4046–4050

    Article  ADS  Google Scholar 

  • Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    Article  Google Scholar 

  • Klages J, Coles M, Kessler H (2007) NMR-based screening: a powerful tool in fragment-based drug discovery. Analyst 132:693–705

    Article  ADS  Google Scholar 

  • Kohlmann A, Zech SG, Li F, Zhou T, Squillace RM, Commodore L, Greenfield MT, Lu X, Miller DP, Huang WS et al (2013) Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors. J Med Chem

  • Krimm I (2012) INPHARMA-based identification of ligand binding site in fragment-based drug design. Med Chem Comm 3:605–610

    Article  Google Scholar 

  • Krishnamoorthy J, Yu VC, Mok YK (2010) Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems. PLoS One 5:e8943

    Article  ADS  Google Scholar 

  • Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002

    Article  ADS  Google Scholar 

  • Leone M, Freeze HH, Chan CS, Pellecchia M (2006) The Nuclear Overhauser Effect in the lead identification process. Curr Drug Discov Technol 3:91–100

    Article  Google Scholar 

  • Lepre CA (2011) Practical aspects of NMR-based fragment screening. Meth Enzymol 493:219–239

    Article  Google Scholar 

  • Lescop E, Kern T, Brutscher B (2010) Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type 1H–15 N correlation experiments. J Magn Reson 203:190–198

    Article  ADS  Google Scholar 

  • Li D, DeRose EF, London RE (1999) The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J Biomol NMR 15:71–76

    Article  MATH  Google Scholar 

  • Ludwig C, Guenther UL (2009) Ligand based NMR methods for drug discovery. Front Biosci 14:4565–4574

    Article  Google Scholar 

  • Ludwig C, Michiels PJ, Wu X, Kavanagh KL, Pilka E, Jansson A, Oppermann U, Gunther UL (2008) SALMON: solvent accessibility, ligand binding, and mapping of ligand orientation by NMR spectroscopy. J Med Chem 51:1–3

    Article  Google Scholar 

  • Manzenrieder F, Frank AO, Kessler H (2008) Phosphorus NMR spectroscopy as a versatile tool for compound library screening. Angew Chem Int Ed Engl 47:2608–2611

    Article  Google Scholar 

  • Mayer M, Meyer B (1999) Characterization of ligand binding of saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38:1784–1788

    Article  Google Scholar 

  • Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    Article  Google Scholar 

  • McCoy MA, Wyss DF (2002) Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J Am Chem Soc 124:11758–11763

    Article  Google Scholar 

  • Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42:864–890

    Article  Google Scholar 

  • Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    Article  Google Scholar 

  • Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Rega MF, Wu B, Wei J, Zhang Z, Cellitti JF, Pellecchia M (2011) SAR by interligand nuclear overhauser effects (ILOEs) based discovery of acylsulfonamide compounds active against Bcl-x(L) and Mcl-1. J Med Chem 54:6000–6013

    Article  Google Scholar 

  • Reibarkh M, Malia TJ, Wagner G (2006) NMR distinction of single- and multiple-mode binding of small-molecule protein ligands. J Am Chem Soc 128:2160–2161

    Article  Google Scholar 

  • Sanchez-Pedregal VM, Reese M, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44:4172–4175

    Article  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  Google Scholar 

  • Seidler J, McGovern SL, Doman TN, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46:4477–4486

    Article  Google Scholar 

  • Shortridge MD, Powers R (2011) NMR Screening Methods for Drug Discovery. In: Biomolecular NMR Spectroscopy. IOS Press BV, Netherlands, p 381

    Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  ADS  Google Scholar 

  • Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C (2010) Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J Am Chem Soc 132:4544–4545

    Article  Google Scholar 

  • Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51:6140–6143

    Article  Google Scholar 

  • Tengel T, Fex T, Emtenas H, Almqvist F, Sethson I, Kihlberg J (2004) Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins. Org Biomol Chem 2:725–731

    Article  Google Scholar 

  • Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G (2005) TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol 12:207–216

    Article  Google Scholar 

  • Vazquez J, Tautz L, Ryan JJ, Vuori K, Mustelin T, Pellecchia M (2007) Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors. J Med Chem 50:2137–2143

    Article  Google Scholar 

  • Vazquez J, De SK, Chen LH, Riel-Mehan M, Emdadi A, Cellitti J, Stebbins JL, Rega MF, Pellecchia M (2008) Development of paramagnetic probes for molecular recognition studies in protein kinases. J Med Chem 51:3460–3465

    Article  Google Scholar 

  • Warr WA (2011) Some trends in chem(o)informatics. Meth Mol Biol 672:1–37

    Article  Google Scholar 

  • Wu B, Zhang Z, Noberini R, Barile E, Giulianotti M, Pinilla C, Houghten RA, Pasquale EB, Pellecchia M (2013) HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem Biol 20:19–33

    Article  Google Scholar 

  • Zhang X, Sanger A, Hemmig R, Jahnke W (2009) Ranking of high-affinity ligands by NMR spectroscopy. Angew Chem Int Ed Engl 48:6691–6694

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Institutes of Health (NIH Director’s Pioneer Award 5DP1OD006933/8DP1CA174419 to S.W.F. and ARRA stimulus grant 5RC2CA148375 to L.J. Marnett). M.J.H. was supported by a postdoctoral fellowship from the Damon Runyon Cancer Research Foundation, and A.O.F. was supported by a postdoctoral fellowship from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Fesik.

Additional information

Mary J. Harner and Andreas O. Frank contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harner, M.J., Frank, A.O. & Fesik, S.W. Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR 56, 65–75 (2013). https://doi.org/10.1007/s10858-013-9740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9740-z

Keywords

Navigation