Skip to main content
Log in

Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of 15N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the 15N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal V, Fink U, Schuldiner S, Reif B (2007) MAS solid-state NMR studies on the multidrug transporter EmrE. Biochim Biophys Acta 1768(12):3036–3043. doi:10.1016/j.bbamem.2007.09.012

    Article  Google Scholar 

  • Akbey Ü, Camponeschi F, van Rossum B-J, Oschkinat H (2011) Triple resonance cross-polarization for more sensitive 13C MAS NMR spectroscopy of deuterated proteins. ChemPhysChem 12(11):2092–2096. doi:10.1002/cphc.201100084

    Article  Google Scholar 

  • Amadi ST, Koteiche HA, Mishra S, Mchaourab HS (2010) Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes. J Biol Chem 285(34):26710–26718. doi:10.1074/jbc.M110.132621

    Article  Google Scholar 

  • Baldus M, Geurts DG, Hediger S, Meier BH (1996) Efficient N-15-C-13 polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization. J Magn Reson, Ser A 118(1):140–144

    Article  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld JH, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Banigan JR, Traaseth NJ (2012) Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 116(24):7138–7144. doi:10.1021/jp303269m

    Article  Google Scholar 

  • Bayro MJ, Daviso E, Belenky M, Griffin RG, Herzfeld J (2012) An amyloid organelle, solid-state NMR evidence for cross-β assembly of gas vesicles. J Biol Chem 287(5):3479–3484. doi:10.1074/jbc.M111.313049

    Article  Google Scholar 

  • Bellstedt P, Herbst C, Häfner S, Leppert J, Görlach M, Ramachandran R (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54(4):325–335. doi:10.1007/s10858-012-9680-z

    Article  Google Scholar 

  • Bertini I, Emsley L, Lelli M, Luchinat C, Mao JF, Pintacuda G (2010) Ultrafast MAS solid-state NMR permits extensive C-13 and H-1 detection in paramagnetic metalloproteins. J Am Chem Soc 132(16):5558. doi:10.1021/Ja100398q

    Article  Google Scholar 

  • Bhate MP, McDermott AE (2012) Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Proc Natl Acad Sci USA 109(38):15265–15270. doi:10.1073/pnas.1211900109

    Article  ADS  Google Scholar 

  • Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–692. doi:10.1038/Nature08722

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102. doi:10.1038/nature01070

    Article  ADS  Google Scholar 

  • Chen Y-J, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci 104(48):18999–19004. doi:10.1073/pnas.0709387104

    Article  ADS  Google Scholar 

  • Cross TA, Sharma M, Yi M, Zhou H-X (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36(2):117–125. doi:10.1016/j.tibs.2010.07.005

    Article  Google Scholar 

  • De Angelis AA, Howell SC, Nevzorov AA, Opella SJ (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128(37):12256–12267. doi:10.1021/ja063640w

    Article  Google Scholar 

  • Durr UHN, Yamamoto K, Im SC, Waskell L, Ramamoorthy A (2007) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b(5). J Am Chem Soc 129(21):6670. doi:10.1021/Ja069028m

    Article  Google Scholar 

  • Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Edit 46(3):459–462. doi:10.1002/anie.200602139

    Article  Google Scholar 

  • Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben-Tal N (2006) Quasi-symmetry in the Cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364(1):54–67. doi:10.1016/j.jmb.2006.08.072

    Article  Google Scholar 

  • Franks WT, Wylie BJ, Stellfox SA, Rienstra CM (2006) Backbone conformational constraints in a microcrystalline U-N-15-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. J Am Chem Soc 128(10):3154–3155. doi:10.1021/Ja058292x

    Article  Google Scholar 

  • Franks WT, Kloepper KD, Wylie BJ, Rienstra CM (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39(2):107–131. doi:10.1007/s10858-007-9179-1

    Article  Google Scholar 

  • Gardiennet C, Loquet A, Etzkorn M, Heise H, Baldus M, Böckmann A (2008) Structural constraints for the Crh protein from solid-state NMR experiments. J Biomol NMR 40(4):239–250. doi:10.1007/s10858-008-9229-3

    Article  Google Scholar 

  • Giraud N, Böckmann A, Lesage A, Penin F, Blackledge M, Emsley L (2004) Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J Am Chem Soc 126(37):11422–11423. doi:10.1021/ja046578g

    Article  Google Scholar 

  • Gopinath T, Veglia G (2012) Dual acquisition magic-angle spinning solid-state nmr-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed 51(11):2731–2735. doi:10.1002/anie.201108132

    Article  Google Scholar 

  • Gustavsson M, Traaseth NJ, Veglia G (2012) Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim Biophys Acta 1818(2):146–153. doi:10.1016/j.bbamem.2011.07.040

    Article  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102(44):15871–15876. doi:10.1073/pnas.0506109102

    Article  ADS  Google Scholar 

  • Herbst C, Riedel K, Ihle Y, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008) MAS solid state NMR of RNAs with multiple receivers. J Biomol NMR 41(3):121–125. doi:10.1007/s10858-008-9247-1

    Article  Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. doi:10.1126/science.1161302

    Article  ADS  Google Scholar 

  • Hong M, DeGrado WF (2012) Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci 21(11):1620–1633. doi:10.1002/pro.2158

    Article  Google Scholar 

  • Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14(1):71–74. doi:10.1023/a:1008334930603

    Article  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63(1):1–24. doi:10.1146/annurev-physchem-032511-143731

    Article  ADS  Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727. doi:10.1021/Ja030547o

    Article  Google Scholar 

  • Jaipuria G, Lobo NP, Shet D, Atreya HS (2012) High resolution methyl selective (1)(3)C-NMR of proteins in solution and solid state. J Biomol NMR 54(1):33–42. doi:10.1007/s10858-012-9647-0

    Article  Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101(3):711–716. doi:10.1073/pnas.0304849101

    Article  ADS  Google Scholar 

  • Jehle S, Rehbein K, Diehl A, van Rossum BJ (2006) Amino-acid selective experiments on uniformly 13C and 15 N labeled proteins by MAS NMR: filtering of lysines and arginines. J Magn Reson 183(2):324–328. doi:10.1016/j.jmr.2006.08.015

    Article  ADS  Google Scholar 

  • Johnson E, Nguyen PT, Yeates TO, Rees DC (2012) Inward facing conformations of the MetNI methionine ABC transporter: implications for the mechanism of transinhibition. Protein Sci 21(1):84–96. doi:10.1002/pro.765

    Article  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55(4):335–360. doi:10.1016/j.pnmrs.2009.07.002

    Article  Google Scholar 

  • Knox RW, Lu GJ, Opella SJ, Nevzorov AA (2010) A resonance assignment method for oriented-sample solid-state NMR of proteins. J Am Chem Soc 132(24):8255–8257. doi:10.1021/ja102932n

    Article  Google Scholar 

  • Korkhov VM, Tate CG (2009) An emerging consensus for the structure of EmrE. Acta Crystallogr D 65:186–192. doi:10.1107/S0907444908036640

    Article  Google Scholar 

  • Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481 (7382):469–474. http://www.nature.com/nature/journal/v481/n7382/abs/nature10737.html#supplementary-information

  • Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya H (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49(1):39–51. doi:10.1007/s10858-010-9459-z

    Article  Google Scholar 

  • Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C (2008) The key residue for substrate transport (Glu14) in the EmrE dimer is asymmetric. J Biol Chem 283(6):3281–3288. doi:10.1074/jbc.M707899200

    Article  Google Scholar 

  • Li J, Hoop CL, Kodali R, Sivanandam VN, van der Wel PCA (2011) Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. J Biol Chem 286(33):28988–28995. doi:10.1074/jbc.M111.261750

    Article  Google Scholar 

  • Lian L-Y, Middleton DA (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog Nucl Magn Reson Spectrosc 39(3):171–190. doi:10.1016/s0079-6565(01)00034-6

    Article  Google Scholar 

  • Liang BY, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci USA 104(41):16140–16145. doi:10.1073/pnas.0705466104

    Article  ADS  Google Scholar 

  • Linden AH, Lange S, Franks WT, Akbey U, Specker E, van Rossum BJ, Oschkinat H (2011) Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J Am Chem Soc 133(48):19266–19269. doi:10.1021/Ja206999c

    Article  Google Scholar 

  • Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165(1):162–174. doi:10.1016/S1090-7807(03)00253-2

    Article  ADS  Google Scholar 

  • Masterson LR, Tonelli M, Markley JL, Veglia G (2008) Simultaneous detection and deconvolution of congested NMR spectra containing three isotopically labeled species. J Am Chem Soc 130(25):7818–7819. doi:10.1021/ja802701w

    Article  Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38(1):385–403. doi:10.1146/annurev.biophys.050708.133719

    Article  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486. doi:10.1016/S1090-7807(03)00082-X

    Article  ADS  Google Scholar 

  • Morrison EA, DeKoster GT, Dutta S, Vafabakhsh R, Clarkson MW, Bahl A, Kern D, Ha T, Henzler-Wildman KA (2012) Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481 (7379):45–50. http://www.nature.com/nature/journal/v481/n7379/abs/nature10703.html#supplementary-information

    Google Scholar 

  • Muller SD, De Angelis AA, Walther TH, Grage SL, Lange C, Opella SJ, Ulrich AS (2007) Structural characterization of the pore forming protein TatA(d) of the twin-arginine translocase in membranes by solid-state N-15-NMR. Biochim Biophys Acta 1768(12):3071–3079. doi:10.1016/j.bbamem.2007.09.008

    Article  Google Scholar 

  • Neugebauer D-C, Zingsheim HP, Oesterhelt D (1978) Recrystallization of the purple membrane in vivo and in vitro. J Mol Biol 123(2):247–257. doi:10.1016/0022-2836(78)90324-8

    Article  Google Scholar 

  • Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 105(47):18349–18354. doi:10.1073/pnas.0806270105

    Article  ADS  Google Scholar 

  • Park SH, Prytulla S, De Angelis AA, Brown JM, Kiefer H, Opella SJ (2006) High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J Am Chem Soc 128(23):7402–7403. doi:10.1021/ja0606632

    Article  Google Scholar 

  • Rasia RM, Brutscher B, Plevin MJ (2012) Selective isotopic unlabeling of proteins using metabolic precursors: application to NMR assignment of intrinsically disordered proteins. ChemBioChem 13(5):732–739. doi:10.1002/cbic.201100678

    Article  Google Scholar 

  • Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the [bgr]2 adrenergic receptor-Gs protein complex. Nature 477 (7366):549–555. http://www.nature.com/nature/journal/v477/n7366/abs/nature10361.html#supplementary-information

    Google Scholar 

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci. doi:10.1073/pnas.1116478109

    Google Scholar 

  • Sackett K, Nethercott MJ, Epand RF, Epand RM, Kindra DR, Shai Y, Weliky DP (2010) Comparative analysis of membrane-associated fusion peptide secondary structure and lipid mixing function of HIV gp41 constructs that model the early pre-hairpin intermediate and final hairpin conformations. J Mol Biol 397(1):301–315. doi:10.1016/j.jmb.2010.01.018

    Article  Google Scholar 

  • Schmidt-Rohr K, Fritzsching KJ, Liao SY, Hong M (2012) Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J Biomol NMR 54(4):343–353. doi:10.1007/s10858-012-9676-8

    Article  Google Scholar 

  • Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Bockmann A, Meier BH (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1–227). ChemBioChem 11(11):1543–1551. doi:10.1002/cbic.201000124

    Article  Google Scholar 

  • Schuldiner S (2009) EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 1794(5):748–762. doi:10.1016/j.bbapap.2008.12.018

    Article  Google Scholar 

  • Sengupta I, Nadaud PS, Helmus JJ, Schwieters CD, Jaroniec CP (2012) Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nat Chem 4(5):410–417. doi:10.1038/Nchem.1299

    Article  Google Scholar 

  • Sharma M, Yi MG, Dong H, Qin HJ, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330(6003):509–512. doi:10.1126/science.1191750

    Article  ADS  Google Scholar 

  • Shi L, Ahmed MAM, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump—structural insights. J Mol Biol 386(4):1078–1093. doi:10.1016/j.jmb.2009.01.011

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tate CG, Kunji ER, Lebendiker M, Schuldiner S (2001) The projection structure of EmrE, a proton-linked multidrug transporter from Escherichia coli, at 7 Å resolution. EMBO J 20:77–81

    Google Scholar 

  • Toyoshima C, Kanai R, Cornelius F (2011) First crystal structures of Na + , K + -ATPase: new light on the oldest ion pump. Structure 19(12):1732–1738. doi:10.1016/j.str.2011.10.016

    Article  Google Scholar 

  • Traaseth NJ, Veglia G (2011) Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson 211(1):18–24. doi:10.1016/j.jmr.2011.03.013

    Article  ADS  Google Scholar 

  • Traaseth NJ, Buffy JJ, Zamoon J, Veglia G (2006) Structural dynamics and topology of phospholamban in oriented lipid bilayers using multidimensional solid-state NMR. Biochemistry 45(46):13827–13834. doi:10.1021/Bi0607610

    Article  Google Scholar 

  • Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106(25):10165–10170. doi:10.1073/pnas.0904290106

    Article  ADS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62(1):279–299. doi:10.1146/annurev-physchem-032210-103539

    Article  ADS  Google Scholar 

  • Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG (2003) Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J 22(23):6175–6181

    Google Scholar 

  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci 108(22):9101–9106. doi:10.1073/pnas.1016535108

    Article  ADS  Google Scholar 

  • Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62. doi:10.1007/978-94-007-4954-2_3

    Article  Google Scholar 

  • Vostrikov VV, Daily AE, Greathouse DV, Koeppe RE (2010) Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem 285(41):31723–31730. doi:10.1074/jbc.M110.152470

    Article  Google Scholar 

  • Vuister GW, Kim S-J, Wu C, Bax A (1994) 2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling. J Am Chem Soc 116(20):9206–9210. doi:10.1021/ja00099a041

    Article  Google Scholar 

  • Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038. doi:10.1002/pro.5560070420

    Article  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459(7245):344–346

    Article  ADS  Google Scholar 

  • Wishart D, Bigam C, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley J, Sykes B (1995) 1H, 13C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140. doi:10.1007/BF00211777

    Article  Google Scholar 

  • Yang J, Tasayco ML, Polenova T (2008) Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies. J Am Chem Soc 130(17):5798–5807. doi:10.1021/ja711304e

    Article  Google Scholar 

  • Zhou YP, Cierpicki T, Jimenez RHF, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908. doi:10.1016/j.molcel.2008.08.028

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant 5K22AI083745 and start-up funds from New York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel J. Traaseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banigan, J.R., Gayen, A. & Traaseth, N.J. Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. J Biomol NMR 55, 391–399 (2013). https://doi.org/10.1007/s10858-013-9724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9724-z

Keywords

Navigation