Skip to main content

Advertisement

Log in

Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer’s disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the 1H,15N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

IDPs:

Intrinsically disordered proteins

Pin1:

Protein interacting with NIMA-1

NIMA:

Never in mitosis gene A

PKA:

Protein kinase A

MALDI-TOF MS:

Matrix-assisted laser desorption ionization- time of flight mass spectrometry

PTMs:

Post translational modifications

RP-HPLC:

Reverse phase high pressure liquid chromatography

WW:

Trp–Trp binding module

WWPKA :

PKA-phosphorylated WW domain

Phospho-WW:

Phosphorylated form of the WW domain

References

  • Ando K, Dourlen P, Sambo AV, Bretteville A, Belarbi K, Vingtdeux V, Eddarkaoui S, Drobecq H, Ghestem A, Begard S, Demey-Thomas E, Melnyk P, Smet C, Lippens G, Maurage CA, Caillet-Boudin ML, Verdier Y, Vinh J, Landrieu I, Galas MC, Blum D, Hamdane M, Sergeant N, Buee L (2012) Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 34(3):757–769

    Google Scholar 

  • Andrew CD, Warwicker J, Jones GR, Doig AJ (2002) Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry 41(6):1897–1905

    Article  Google Scholar 

  • Arosio B, Bulbarelli A, Bastias Candia S, Lonati E, Mastronardi L, Romualdi P, Candeletti S, Gussago C, Galimberti D, Scarpini E, Dell’Osso B, Altamura C, MacCarrone M, Bergamaschini L, D’Addario C, Mari D (2012) Pin1 contribution to Alzheimer’s disease: transcriptional and epigenetic mechanisms in patients with late-onset Alzheimer’s disease. Neuro Degener Dis 10(1–4):207–211

    Article  Google Scholar 

  • Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17(1):75–86

    Article  Google Scholar 

  • Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14(8):738–745

    Article  Google Scholar 

  • Balastik M, Lim J, Pastorino L, Lu KP (2007) Pin1 in Alzheimer’s disease: multiple substrates, one regulatory mechanism? Biochim Biophys Acta 1772(4):422–429

    Article  Google Scholar 

  • Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814

    Article  Google Scholar 

  • Bayer E, Goettsch S, Mueller JW, Griewel B, Guiberman E, Mayr LM, Bayer P (2003) Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J Biol Chem 278(28):26183–26193

    Article  Google Scholar 

  • Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15(3):203–206

    Article  Google Scholar 

  • Bulbarelli A, Lonati E, Cazzaniga E, Gregori M, Masserini M (2009) Pin1 affects Tau phosphorylation in response to Abeta oligomers. Mol Cell Neurosci 42(1):75–80

    Article  Google Scholar 

  • Du JT, Li YM, Wei W, Wu GS, Zhao YF, Kanazawa K, Nemoto T, Nakanishi H (2005) Low-barrier hydrogen bond between phosphate and the amide group in phosphopeptide. J Am Chem Soc 127(47):16350–16351

    Article  Google Scholar 

  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438(7064):117–121

    Article  ADS  Google Scholar 

  • Eto M, Kitazawa T, Matsuzawa F, Aikawa S, Kirkbride JA, Isozumi N, Nishimura Y, Brautigan DL, Ohki SY (2007) Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor. Structure 15(12):1591–1602

    Article  Google Scholar 

  • Golovanov AP, Blankley RT, Avis JM, Bermel W (2007) Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 129(20):6528–6535

    Article  Google Scholar 

  • Hamdane M, Smet C, Sambo AV, Leroy A, Wieruszeski JM, Delobel P, Maurage CA, Ghestem A, Wintjens R, Begard S, Sergeant N, Delacourte A, Horvath D, Landrieu I, Lippens G, Buee L (2002) Pin1: a therapeutic target in Alzheimer neurodegeneration. J Mol Neurosci 19(3):275–287

    Article  Google Scholar 

  • Hwang TL, van Zijl PC, Mori S (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J Biomol NMR 11(2):221–226

    Article  Google Scholar 

  • Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    Article  Google Scholar 

  • Johnson LN, Barford D (1993) The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22:199–232

    Article  Google Scholar 

  • Kay LE (2005) NMR studies of protein structure and dynamics. J Magn Reson 173(2):193–207

    Article  MathSciNet  ADS  Google Scholar 

  • Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T, Lippens G (2006) NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc 128(11):3575–3583

    Article  Google Scholar 

  • Landrieu I, Leroy A, Smet-Nocca C, Huvent I, Amniai L, Hamdane M, Sibille N, Buee L, Wieruszeski JM, Lippens G (2010) NMR spectroscopy of the neuronal tau protein: normal function and implication in Alzheimer’s disease. Biochem Soc Trans 38(4):1006–1011

    Article  Google Scholar 

  • Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424(6948):556–561

    Article  ADS  Google Scholar 

  • Lippens G, Landrieu I, Hanoulle X (2008) Studying posttranslational modifications by in-cell NMR. Chem Biol 15(4):311–312

    Article  Google Scholar 

  • Lonati E, Masserini M, Bulbarelli A (2011) Pin1: a new outlook in Alzheimer’s disease. Curr Alzheimer Res 8(6):615–622

    Article  Google Scholar 

  • Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380(6574):544–547

    Article  ADS  Google Scholar 

  • Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788

    Article  ADS  Google Scholar 

  • Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP (2002) Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 277(4):2381–2384

    Article  Google Scholar 

  • Ma SL, Pastorino L, Zhou XZ, Lu KP (2012) Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect against Alzheimer disease. J Biol Chem 287(10):6969–6973

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228

    Article  ADS  Google Scholar 

  • Ohki S, Eto M, Kariya E, Hayano T, Hayashi Y, Yazawa M, Brautigan D, Kainosho M (2001) Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation. J Mol Biol 314(4):839–849

    Article  Google Scholar 

  • Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440(7083):528–534

    Article  ADS  Google Scholar 

  • Peng T, Zintsmaster JS, Namanja AT, Peng JW (2007) Sequence-specific dynamics modulate recognition specificity in WW domains. Nat Struct Mol Biol 14(4):325–331

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665

    Article  Google Scholar 

  • Prabakaran S, Everley RA, Landrieu I, Wieruszeski JM, Lippens G, Steen H, Gunawardena J (2011) Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phospho-form distributions. Mol Syst Biol 7:482

    Article  Google Scholar 

  • Pufall MA, Lee GM, Nelson ML, Kang HS, Velyvis A, Kay LE, McIntosh LP, Graves BJ (2005) Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science 309(5731):142–145

    Article  ADS  Google Scholar 

  • Pullen K, Rajagopal P, Branchini BR, Huffine ME, Reizer J, Saier MH Jr, Scholtz JM, Klevit RE (1995) Phosphorylation of serine-46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure. Protein Sci 4(12):2478–2486

    Article  Google Scholar 

  • Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89(6):875–886

    Article  Google Scholar 

  • Rangasamy V, Mishra R, Sondarva G, Das S, Lee TH, Bakowska JC, Tzivion G, Malter JS, Rana B, Lu KP, Kanthasamy A, Rana A (2012) Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function. Proc Natl Acad Sci USA 109(21):8149–8154

    Article  ADS  Google Scholar 

  • Sharpe T, Jonsson AL, Rutherford TJ, Daggett V, Fersht AR (2007) The role of the turn in beta-hairpin formation during WW domain folding. Protein Sci 16(10):2233–2239

    Article  Google Scholar 

  • Smet C, Duckert JF, Wieruszeski JM, Landrieu I, Buee L, Lippens G, Deprez B (2005a) Control of protein–protein interactions: structure-based discovery of low molecular weight inhibitors of the interactions between Pin1 WW domain and phosphopeptides. J Med Chem 48(15):4815–4823

    Article  Google Scholar 

  • Smet C, Sambo AV, Wieruszeski JM, Leroy A, Landrieu I, Buee L, Lippens G (2004) The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry 43(7):2032–2040

    Article  Google Scholar 

  • Smet C, Wieruszeski JM, Buee L, Landrieu I, Lippens G (2005b) Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Lett 579(19):4159–4164

    Article  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27(7):918–925

    Article  Google Scholar 

  • Teriete P, Thai K, Choi J, Marassi FM (2009) Effects of PKA phosphorylation on the conformation of the Na, K-ATPase regulatory protein FXYD1. Biochim Biophys Acta 1788(11):2462–2470

    Article  Google Scholar 

  • Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P (2012) Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54(3):217–236

    Google Scholar 

  • Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP (2000) Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7(8):639–643

    Article  Google Scholar 

  • Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buee L, Lippens G, Landrieu I (2001) 1H NMR study on the binding of Pin1 Trp–Trp domain with phosphothreonine peptides. J Biol Chem 276(27):25150–25156

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  Google Scholar 

  • Wittekind M, Reizer J, Deutscher J, Saier MH, Klevit RE (1989) Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry 28(26):9908–9912

    Article  Google Scholar 

  • Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278(5345):1957–1960

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Professor H. Schwalbe (Frankfurt, Germany) for a kind gift of the purified PKA enzyme. The NMR facilities are funded by the the European community, the Centre National de la Recherche Scientifique (CNRS), the Région Nord-Pas de Calais (France), the University of Lille 1 and the Institut Pasteur de Lille. The Mass Spectrometry facilities are funded by the European community (FEDER), the Région Nord-Pas de Calais (France), the IBISA network, the CNRS, and the University of Lille 1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caroline Smet-Nocca or Isabelle Landrieu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smet-Nocca, C., Launay, H., Wieruszeski, JM. et al. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. J Biomol NMR 55, 323–337 (2013). https://doi.org/10.1007/s10858-013-9716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9716-z

Keywords

Navigation