Skip to main content
Log in

Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  Google Scholar 

  • Ahuja S, Hornak V, Yan EC, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175

    Article  Google Scholar 

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  ADS  Google Scholar 

  • Asada H, Uemura T, Yurugi-Kobayashi T, Shiroishi M, Shimamura T, Tsujimoto H, Ito K, Sugawara T, Nakane T, Nomura N, Murata T, Haga T, Iwata S, Kobayashi T (2011) Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 10:24

    Article  Google Scholar 

  • Barnes AB, Paepe GD, van der Wel PC, Hu KN, Joo CG, Bajaj VS, Mak-Jurkauskas ML, Sirigiri JR, Herzfeld J, Temkin RJ, Griffin RG (2008) High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson 34:237–263

    Article  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    Article  Google Scholar 

  • Berger C, Ho JT, Kimura T, Hess S, Gawrisch K, Yeliseev A (2010) Preparation of stable isotope-labeled peripheral cannabinoid receptor CB2 by bacterial fermentation. Protein Expr Purif 70:236–247

    Article  Google Scholar 

  • Bornert O, Alkhalfioui F, Logez C, Wagner R (2012) Overexpression of membrane proteins using Pichia pastoris. Curr Protoc Protein Sci Chapter 29:29.2.1–29.2.24

  • Cabiaux V, Oberg KA, Pancoska P, Walz T, Agre P, Engel A (1997) Secondary structures comparison of aquaporin-1 and bacteriorhodopsin: a Fourier transform infrared spectroscopy study of two-dimensional membrane crystals. Biophys J 73:406–417

    Article  Google Scholar 

  • Chen H, Ilan B, Wu Y, Zhu F, Schulten K, Voth GA (2007) Charge delocalization in proton channels, I: the aquaporin channels and proton blockage. Biophys J 92:46–60

    Article  Google Scholar 

  • daCosta CJ, Baenziger JE (2003) A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallization. Acta Crystallogr 59:77–83

    Google Scholar 

  • de Groot BL, Engel A, Grubmuller H (2001) A refined structure of human aquaporin-1. FEBS Lett 504:206–211

    Article  Google Scholar 

  • de Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293

    Article  Google Scholar 

  • Egorova-Zachernyuk TA, Bosman GJ, Degrip WJ (2011) Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Appl Microbiol Biotechnol 89:397–406

    Article  Google Scholar 

  • Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Gautier A, Nietlispach D (2012) Solution NMR studies of integral polytopic alpha-helical membrane proteins: the structure determination of the seven-helix transmembrane receptor sensory rhodopsin II, pSRII. Methods Mol Biol (Clifton, NJ) 914:25–45

    Google Scholar 

  • Goncalves JA, Ahuja S, Erfani S, Eilers M, Smith SO (2010) Structure and function of G protein-coupled receptors using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:159–180

    Article  Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  ADS  Google Scholar 

  • Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240

    ADS  Google Scholar 

  • Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, Miercke LJ, Stroud RM (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci USA 106:7437–7442

    Article  ADS  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  ADS  Google Scholar 

  • Horsefield R, Norden K, Fellert M, Backmark A, Tornroth-Horsefield S, van Terwisscha Scheltinga AC, Kvassman J, Kjellbom P, Johanson U, Neutze R (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105:13327–13332

    Article  ADS  Google Scholar 

  • Isaksson L, Enberg J, Neutze R, Goran Karlsson B, Pedersen A (2012) Expression screening of membrane proteins with cell-free protein synthesis. Protein Expr Purif 82:218–225

    Article  Google Scholar 

  • Issaly N, Solsona O, Joudrier P, Gautier MF, Moulin G, Boze H (2001) Optimization of the wheat puroindoline-a production in Pichia pastoris. J Appl Microbiol 90:397–406

    Article  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  Google Scholar 

  • Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJ, Blain KY, Esquivies L, Kwon JH, Balana B, Pieper U, Sali A, Slesinger PA, Kwiatkowski W, Riek R, Choe S (2012) Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9:834–839

    Article  Google Scholar 

  • Laize V, Ripoche P, Tacnet F (1997) Purification and functional reconstitution of the human CHIP28 water channel expressed in Saccharomyces cerevisiae. Protein Expr Purif 11:284–288

    Article  Google Scholar 

  • Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Protein Sci 17:199–204

    Article  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  ADS  Google Scholar 

  • Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, Andre N, Hassaine G, Michel H, Cambillau C, Pattus F (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7:77–91

    Article  Google Scholar 

  • Makino S, Goren MA, Fox BG, Markley JL (2010) Cell-free protein synthesis technology in NMR high-throughput structure determination. Methods Mol Biol (Clifton, NJ) 607:127–147

    Article  Google Scholar 

  • Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, Tian Y, Opella SJ (2011) Structure determination of membrane proteins in five easy pieces. Methods 55:363–369

    Article  Google Scholar 

  • Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H–1H spin–spin coupling constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  Google Scholar 

  • McDermott A (2009) Solid state NMR studies of enzymes and membrane proteins. Annu Rev Biophys 38:385–403

    Article  MathSciNet  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126:7196–7197

    Article  Google Scholar 

  • Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17:337–347

    Article  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  ADS  Google Scholar 

  • Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci USA 106:5406–5411

    Article  ADS  Google Scholar 

  • Norden K, Agemark M, Danielson JA, Alexandersson E, Kjellbom P, Johanson U (2011) Increasing gene dosage greatly enhances recombinant expression of aquaporins in Pichia pastoris. BMC Biotechnol 11:47

    Article  Google Scholar 

  • Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikstrom J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K (2007) Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 56:110–120

    Article  Google Scholar 

  • Oberg F, Ekvall M, Nyblom M, Backmark A, Neutze R, Hedfalk K (2009) Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in Pichia pastoris. Mol Membr Biol 26:215–227

    Article  Google Scholar 

  • Oberg F, Sjohamn J, Conner MT, Bill RM, Hedfalk K (2011) Improving recombinant eukaryotic membrane protein yields in Pichia pastoris: the importance of codon optimization and clone selection. Mol Membr Biol 28:398–411

    Article  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    Google Scholar 

  • Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol (Clifton, NJ) 278:17–33

    Google Scholar 

  • Pitard B, Richard P, Dunach M, Girault G, Rigaud JL (1996a) ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin.1. Factors defining the optimal reconstitution of ATP synthases with bacteriorhodopsin. Eur J Biochem 235:769–778

    Article  Google Scholar 

  • Pitard B, Richard P, Dunach M, Rigaud JL (1996b) ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin.2. Relationships between proton motive force and ATP synthesis. Eur J Biochem 235:779–788

    Article  Google Scholar 

  • Qureshi T, Goto NK (2012) Contemporary methods in structure determination of membrane proteins by solution NMR. Top Curr Chem 326:123–185

    Article  Google Scholar 

  • Ratnala VR (2006) New tools for G-protein coupled receptor (GPCR) drug discovery: combination of baculoviral expression system and solid state NMR. Biotechnol Lett 28:767–778

    Article  Google Scholar 

  • Reckel S, Sobhanifar S, Durst F, Lohr F, Shirokov VA, Dotsch V, Bernhard F (2010) Strategies for the cell-free expression of membrane proteins. Methods Mol Biol (Clifton, NJ) 607:187–212

    Article  Google Scholar 

  • Reckel S, Gottstein D, Stehle J, Lohr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Guntert P, Dotsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50:11942–11946

    Article  Google Scholar 

  • Ren G, Reddy VS, Cheng A, Melnyk P, Mitra AK (2001) Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc Natl Acad Sci USA 98:1398–1403

    Article  ADS  Google Scholar 

  • Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed Engl 49:8346–8357

    Article  Google Scholar 

  • Rigaud JL, Bluzat A, Buschlen S (1983) Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation. Biochem Biophys Res Commun 111:373–382

    Article  Google Scholar 

  • Rodriguez E, Krishna NR (2001) An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris. J Biochem 130:19–22

    Article  Google Scholar 

  • Seeliger D, Zapater C, Krenc D, Haddoub R, Flitsch S, Beitz E, Cerda J, de Groot BL (2012) Discovery of Novel Human Aquaporin-1 Blockers. ACS Chem Biol 8:249–256

  • Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009a) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump structural insights. J Mol Biol 386:1078–1093

    Article  Google Scholar 

  • Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V (2009b) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta 1788:2563–2574

    Article  Google Scholar 

  • Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V (2011) Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed Engl 50:1302–1305

    Article  Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  Google Scholar 

  • Singh S, Gras A, Fiez-Vandal C, Martinez M, Wagner R, Byrne B (2012) Large-scale production of membrane proteins in Pichia pastoris: the production of G protein-coupled receptors as a case study. Methods Mol Biol (Clifton, NJ) 866:197–207

    Article  Google Scholar 

  • Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol (Clifton, NJ) 831:19–36

    Article  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  ADS  Google Scholar 

  • Takahashi H, Shimada I (2010) Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells. J Biomol NMR 46:3–10

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326:1668–1674

    Article  ADS  Google Scholar 

  • Tapaneeyakorn S, Goddard AD, Oates J, Willis CL, Watts A (2011) Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim Biophys Acta 1808:1462–1475

    Article  Google Scholar 

  • Vass E, Hollosi M, Besson F, Buchet R (2003) Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins. Chem Rev 103:1917–1954

    Article  Google Scholar 

  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106

    Article  ADS  Google Scholar 

  • Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861

    Article  Google Scholar 

  • Wang S, Shi L, Okitsu T, Wada A, Brown LS, Ladizhansky V (2012) Solid-state NMR (13)C and (15)N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol NMR Assign. doi:10.1007/s12104-012-9421-y

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974

    Article  Google Scholar 

  • Waschuk SA, Bezerra AG, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. P Natl Acad Sci USA 102:6879–6883

    Article  ADS  Google Scholar 

  • Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53

    Article  MATH  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  ADS  Google Scholar 

  • Wood MJ, Komives EA (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13:149–159

    Article  Google Scholar 

  • Yool AJ (2007) Functional domains of aquaporin-1: keys to physiology, and targets for drug discovery. Curr Pharm Des 13:3212–3221

    Article  Google Scholar 

  • Yool AJ, Brown EA, Flynn GA (2010) Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 37:403–409

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frederick Öberg and Kristina Hedfalk (Göteborg University, Sweden) for the generous gift of hAQP1 expression vector. The research was supported by the University of Guelph (start-up funds to V.L. and L.S.B.), the Natural Sciences and Engineering Research Council of Canada (discovery grants to L.S.B. and to V.L.), Canada Foundation for Innovation, and the Ontario Ministry of Research and Innovation. V.L. holds Canada Research Chair in biophysics, and S.E. is a recipient of the Ontario Trillium scholarship. We thank Drs. Armen Charchoglyan and Dyanne Brewer for MALDI-MS data collection. We thank Dr. Miguel Lugo for his help with stopped-flow measurements and Dr. Shenlin Wang for the help with NMR data processing. We thank Cambridge Isotope Laboratories for the generous gift of isotopically labeled methanol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid S. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emami, S., Fan, Y., Munro, R. et al. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55, 147–155 (2013). https://doi.org/10.1007/s10858-013-9710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9710-5

Keywords

Navigation