Skip to main content
Log in

NMR structure note: a defective isoform and its activity-improved variant of a type III antifreeze protein from Zoarces elongates Kner

  • NMR Structure Note
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Antson AA, Smith DJ, Roper DI, Lewis S, Caves LS, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305:875–889. doi:10.1006/jmbi.2000.4336

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins from teleost fishes. Ann Rev Physiol 63:327–357. doi:10.1146/annurev.physiol.63.1.359

    Article  Google Scholar 

  • Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL (2010) Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 49:9063–9071. doi:10.1021/bi100516e

    Article  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA 108:7363–7367. doi:10.1073/pnas.1100429108

    Article  ADS  Google Scholar 

  • Garnham CP, Nishimiya Y, Tsuda S, Davies PL (2012) Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. FEBS Lett 586:3876–3881. doi:10.1016/j.febslet.2012.09.017

    Article  Google Scholar 

  • Goddard TD, Kneller DG (1997) SPARKY 3, University of California, San Francisco http://www.cgl.ucsf.edu/home/sparky/

  • Graether SP, Sykes BD (2004) Cold survival in freeze-intolerant insects: the structure and function of β-helical antifreeze proteins. Eur J Biochem 271:3285–3296. doi:10.1111/j.1432-1033.2004.04256.x

    Article  Google Scholar 

  • Graether SP, DeLuca CI, Baardsnes J, Hill GA, Davies PL, Jia Z (1999) Quantitative and qualitative analysis of type III antifreeze protein structure and function. J Biol Chem 274:11842–11847. doi:10.1074/jbc.274.17.11842

    Article  Google Scholar 

  • Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378. doi:10.1385/1-59259-809-9:353

    Google Scholar 

  • Howard EI, Blakeley MP, Haertlein M, Petit-Haertlein I, Mitschler A, Fisher SJ, Cousido-Siah A, Salvay AG, Popov A, Muller-Dieckmann C, Petrova T, Podjarny A (2011) Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. J Mol Recognit 24:724–732. doi:10.1002/jmr.1130

    Article  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci 109:9360–9365. doi:10.1073/pnas.1121607109

    Article  Google Scholar 

  • Liou YC, Tociij A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–324. doi:10.1038/35018604

    Article  ADS  Google Scholar 

  • Miura K, Ohgiya S, Hoshino T, Nemoto N, Suetake T, Miura A, Spyracopoulos L, Kondo H, Tsuda S (2001) NMR Analysis of Type III Antifreeze Protein Intramolecular Dimer. Structural basis for enhanced activity. J Biol Chem 276:1304–1310. doi:10.1074/jbc.M007902200

    Article  Google Scholar 

  • Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 272:482–492. doi:10.1111/j.1742-4658.2004.04490.x

    Article  Google Scholar 

  • Schwarzinger S, Kroon GJA, Foss TR, Wright PE, Dyson HJ (2000) Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. J Biomol NMR 18:43–48. doi:10.1023/A:1008386816521

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein torsion angle from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved the energetics of the protein-ice interaction. Structure 4:1325–1337. doi:10.1016/S0969-2126(96)00140-2

    Article  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2008) Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 276:1471–1479. doi:10.1111/j.1742-4658.2009.06887.x

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140. doi:10.1007/BF00211777

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Peter Davies at Queen’s University for stimulating suggestions. This work was supported by a Grant-in-Aid for scientific research from the Japan Society for the Promotion of Science (JSPS) (No. 23310171) and from the Japan Bio-oriented Technology Research Advancement Institution (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakae Tsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumeta, H., Ogura, K., Nishimiya, Y. et al. NMR structure note: a defective isoform and its activity-improved variant of a type III antifreeze protein from Zoarces elongates Kner . J Biomol NMR 55, 225–230 (2013). https://doi.org/10.1007/s10858-012-9703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9703-9

Keywords

Navigation