Skip to main content
Log in

The protein amide 1HN chemical shift temperature coefficient reflects thermal expansion of the N–H···O=C hydrogen bond

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The protein amide 1HN chemical shift temperature coefficient can be determined with high accuracy by recording spectra at different temperatures, but the physical mechanism responsible for this temperature dependence is not well understood. In this work, we find that this coefficient strongly correlates with the temperature coefficient of the through-hydrogen-bond coupling, 3hJNC′, based on NMR measurements of protein GB3. Parallel tempering molecular dynamics simulation suggests that the hydrogen bond distance variation at different temperatures/replicas is largely responsible for the 1HN chemical shift temperature dependence, from which an empirical equation is proposed to predict the hydrogen bond thermal expansion coefficient, revealing responses of individual hydrogen bonds to temperature changes. Different expansion patterns have been observed for various networks formed by β strands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen NH et al (1997) Extracting information from the temperature gradients of polypeptide NH chemical shifts.1. The importance of conformational averaging. J Am Chem Soc 119:8547–8561

    Article  Google Scholar 

  • Barfield M (2002) Structural dependencies of interresidue scalar coupling (h3)J(NC), and donor H-1 chemical shifts in the hydrogen bonding regions of proteins. J Am Chem Soc 124:4158–4168

    Article  Google Scholar 

  • Baxter NJ, Williamson MP (1997) Temperature dependence of H-1 chemical shifts in proteins. J Biomol NMR 9:359–369

    Article  Google Scholar 

  • Berendsen HJC (1991) Transport-properties computed by linear response through weak-coupling to a bath. Nato Adv Sci I E App 205:139–155

    Google Scholar 

  • Cavalli A et al (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21:249–261

    Article  Google Scholar 

  • Cierpicki T et al (2002) Hydrogen bonds in human ubiquitin reflected in temperature coefficients of amide protons. J Magn Reson 157:178–180

    Article  ADS  Google Scholar 

  • Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue (3 h)J(NC′) scalar couplings. J Am Chem Soc 121:1601–1602

    Article  Google Scholar 

  • Cordier F, Grzesiek S (2002) Temperature-dependence properties as studied by of protein hydrogen bond high-resolution NMR. J Mol Biol 317:739–752

    Article  Google Scholar 

  • Cornilescu G, Hu JS, Bax A (1999a) Identification of the hydrogen bonding network in a protein by scalar couplings. J Am Chem Soc 121:2949–2950

    Article  Google Scholar 

  • Cornilescu G et al (1999b) Correlation between (3 h)J(NC′) and hydrogen bond length in proteins. J Am Chem Soc 121:6275–6279

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle Mesh Ewald—an N.Log(N) method for Ewald Sums in large systems. J Chem Phys 98:10089–10092

    Article  ADS  Google Scholar 

  • Essmann U et al (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  ADS  Google Scholar 

  • Grzesiek S et al (2004) Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog Nucl Magn Reson Spectrosc 45:275–300

    Article  Google Scholar 

  • Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281:140–150

    Article  ADS  Google Scholar 

  • Hess B et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  • Hess B et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  Google Scholar 

  • Hornak V et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  Google Scholar 

  • Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149

    Article  Google Scholar 

  • Kohlhoff KJ et al (2009) Fast and accurate predictions of protein nmr chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Article  Google Scholar 

  • Neal S et al (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Ohnishi M, Urry DW (1969) Temperature dependence of amide proton chemical shift: secondary structures of gramicidin s and valinomycin. Biochem Bioph Res Co 36:194–202

    Article  Google Scholar 

  • Parker LL, Houk AR, Jensen JH (2006) Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins. J Am Chem Soc 128:9863–9872

    Article  Google Scholar 

  • Patriksson A, van der Spoel D (2008) A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys 10:2073–2077

    Article  Google Scholar 

  • Sass H-J, Schmid FF-F, Grzesiek S (2007) Correlation of protein structure and dynamics to scalar couplings across hydrogen bonds. J Am Chem Soc 129:5898–5903

    Article  Google Scholar 

  • Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302

    Article  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA plus: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22

    Article  Google Scholar 

  • Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Shen Y et al (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Sitkoff D, Case DA (1997) Density functional calculations of proton chemical shifts in model peptides. J Am Chem Soc 119:12262–12273

    Article  Google Scholar 

  • Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  ADS  Google Scholar 

  • Tomlinson JH, Williamson MP (2012) Amide temperature coefficients in the protein G B1 domain. J Biomol NMR 52:57–64

    Article  Google Scholar 

  • Van der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Vila JA et al (2008) Quantum chemical C-13(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation. Proc Natl Acad Sci USA 105:14389–14394

    Article  ADS  Google Scholar 

  • Xu XP, Case DA (2001) Automated prediction of (15)N, (13)C(alpha), (13)C(beta) and (13)C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333

    Article  Google Scholar 

  • Yao L, Ying J, Bax A (2009) Improved accuracy of N-15-H-1 scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins. J Biomol NMR 43:161–170

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dennis Torchia for the critical reading of the manuscript and Shanghai supercomputer center for the computer resources. This work was supported in part by 100 Talent Project of Chinese Academy of Sciences, National Nature Science Foundation of China (Grant no. 21173247) and the Foundation for Outstanding Young Scientist in Shandong Province (Grant no. JQ201104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishan Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Jing, Q. & Yao, L. The protein amide 1HN chemical shift temperature coefficient reflects thermal expansion of the N–H···O=C hydrogen bond. J Biomol NMR 55, 71–78 (2013). https://doi.org/10.1007/s10858-012-9689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9689-3

Keywords

Navigation