Skip to main content
Log in

The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

While reliable procedures for determining the conformations of proteins are available, methods for generating ensembles of structures that also reflect their flexibility are much less well established. Here we present a systematic assessment of the ability of ensemble-averaged molecular dynamics simulations with ensemble-averaged NMR restraints to simultaneously reproduce the average structure of proteins and their associated dynamics. We discuss the effects that under-restraining (overfitting) and over-restraining (underfitting) have on the structures generated in ensemble-averaged molecular simulations. We then introduce the MUMO (minimal under-restraining minimal over-restraining) method, a procedure in which different observables are averaged over a different number of molecules. As both over-restraining and under-restraining are significantly reduced in the MUMO method, it is possible to generate ensembles of conformations that accurately characterize both the structure and the dynamics of native states of proteins. The application of the MUMO method to the protein ubiquitin yields a high-resolution structural ensemble with an RDC Q-factor of 0.19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barfield M (2002) Structural dependencies of interresidue scalar coupling (h3)J(NC), and donor H-1 chemical shifts in the hydrogen bonding regions of proteins. J Am Chem Soc 124:4158–4168

    Article  Google Scholar 

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Prot Sci 12:1–16

    Article  Google Scholar 

  • Beglov D, Roux B (1994) Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J Chem Phys 100:9050–9063

    Article  ADS  Google Scholar 

  • Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR order parameters. J Am Chem Soc 126:8090–8091

    Article  Google Scholar 

  • Bonvin AMJJ, Boelens R, Kaptein R (1994) Time- and ensemble-averaged direct NOE restraints. J Biomol NMR 4:143–149

    Article  Google Scholar 

  • Bonvin AMJJ, Brunger AT (1995) Conformational variability of solution nuclearmagnetic-resonance structures. J Mol Biol 250:80–93

    Article  Google Scholar 

  • Bonvin AMJJ, Brünger AT (1996) Do NOE distances contain enough information to assess the relative populations of multi-conformer structures? J Biomol NMR 7:72–76

    Article  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J Comp Chem 4:187–217

    Article  Google Scholar 

  • Brünger A (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  ADS  Google Scholar 

  • Brünger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R, Jiang J, Kuszewski J, Nilges M, Pannu N, Read R, Rice L, Simonson T, Warren G (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst D 54:905–921

    Article  Google Scholar 

  • Brünger A, Clore GM, Gronenborn A, Saffrich R, Nilges M (1993) Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261:328–331

    Article  ADS  Google Scholar 

  • Brünger AT, Clore GM, Gronenborn AM, Karplus M (1986) Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: Application to crambin. Proc Natl Acad Sci USA 83:3801–3805

    Article  ADS  Google Scholar 

  • Bürgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19:305–320

    Article  Google Scholar 

  • Carlson HA (2002) Protein flexibility and drug design: How to hit a moving target. Curr Opin Cell Biol 6:447–452

    Google Scholar 

  • Carlson HA, McCammon JA (2000) Accomodating protein flexibility in computational drug design. Mol Pharmacol 57:213–218

    Google Scholar 

  • Chang S, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Res 174:43–53

    Article  ADS  Google Scholar 

  • Chen J, Brooks CL, Wright PE (2004) Model-free analysis of protein dynamics: Assessment of accuracy and model selection protocols based on molecular dynamics simulation. J Biomol NMR 29:243–257

    Article  Google Scholar 

  • Chou J, Case D, Bax A (2003) Insights into the mobility of methyl-bearing side chains in proteins from 3 J CC and 3JCN couplings. J Am Chem Soc 125:8959–8966

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126:2923–2938

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: Correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43:10678–10691

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: A unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355:879–886

    Article  Google Scholar 

  • Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue 3hJNC’ scalar couplings. J Am Chem Soc 117:5179–5197

    Google Scholar 

  • Cordier F, Grzesiek S (2002) Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol 317:739–752

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837

    Article  Google Scholar 

  • de Alba E, Tjandra N (2002) NMR dipolar couplings for the structure determination of biopolymers in solution. Prog Nucl Mag Res Spec 40:175–197

    Article  Google Scholar 

  • Fennen J, Torda AE, van Gunsteren WF (1995) Structure refinement with molecular-dynamics and a boltzmann-weighted ensemble. J Biomol NMR 6:163–170

    Article  Google Scholar 

  • Grunberg R, Leckner J, Nilges M (2004) Complementarity of structure ensembles in protein–protein binding. Science 12:2125–2136

    Google Scholar 

  • Grzesiek S, Cordier F, Jaravine V, Barfield M (2004) Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog Nucl Mag Res Spec 45:275–300

    Article  Google Scholar 

  • Henry ER, Szabo A (1985) Influence of vibrational motion on solid state line shapes and NMR relaxation. J Chem Phys 82:4753–4761

    Article  ADS  Google Scholar 

  • Hess B, Scheek RM (2003) Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Magn Res 164:19–27

    Article  ADS  Google Scholar 

  • Ichiye T, Karplus M (1988) Anisotropy and anharmonicity of atomic fluctuations in proteins: Implications for x-ray analysis. Biochemistry 27:3487–3497

    Article  Google Scholar 

  • Jorgensen WJ, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  ADS  Google Scholar 

  • Karplus M (1963) Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc 85:2870–2871

    Article  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  ADS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  Google Scholar 

  • Karplus M, Petsko G (1990) Molecular dynamics simulations in biology. Nature 347:631–639

    Article  ADS  Google Scholar 

  • Kemmink J, Scheek RM (1995) Dynamic modeling of a helical peptide in solution using NMR data—multiple conformations and multi-spin effects. J Biomol NMR 6:33–40

    Article  Google Scholar 

  • Kuriyan J, Petsko G, Levy RM, Karplus M (1986) Effect of anisotropy and anharmonicity on protein crystallographic refinement: An evaluation by molecular dynamics. J Mol Biol 190:227–254

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–2338

    Article  Google Scholar 

  • Lee AL, Flynn PF, Wand AJ (1999) Comparison of 2 h and 13c NMR: relaxation techniques for the study of protein methyl group dynamics in solution. J Am Chem Soc 121:2891–2902

    Article  Google Scholar 

  • Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  ADS  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Ma B, Nussinov R (2002) Stabilities and conformations of Alzheimer’s β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, Aβ10–35): Sequence effects. Proc Natl Acad Sci USA 99:14126–14131

    Article  ADS  Google Scholar 

  • MacKerell Jr AD, Bashford D, Bellot M, Dunbrack RLJ, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Ha S, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich B, Smith JC, Stote RH, Straub J, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  • Mezard M, Parisi G, Virasoro M (1987) Spin glass theory and beyond. Singapore, World Scientific Publishing

    MATH  Google Scholar 

  • Nederveen A, Bonvin AMJJ (2005) NMR relaxation and internal dynamics of ubiquitin from a 0.2 microsecond MD simulation. J Chem Theor Comp 1:363–374

    Article  Google Scholar 

  • Neuhaus D, Williamson MP (2000) The nuclear Overhauser effect in structural and conformational analysis. New York, Wiley

    Google Scholar 

  • Paci E, Karplus M (1999) Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J Mol Biol 288:441–459

    Article  Google Scholar 

  • Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  Google Scholar 

  • Perryman AL, Lin J, McCammon JA (2004) HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs. Prot Sci 13:1108–1123

    Article  Google Scholar 

  • Rieping W, Habeck M, Nilges M (2005) Inferential structure determination. Science 309:303–306

    Article  ADS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion if a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  • Schneider TR, Brünger AT, Nilges M (1999) Influence of internal dynamics on accuracy of protein NMR structures: Derivation of realistic model distance data from a long molecular dynamics trajectory. J Mol Biol 285:727–740

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Clore GM (2005) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Mag Res Spec 48:47–62

    Article  Google Scholar 

  • Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  Google Scholar 

  • Scott WRP, Mark AE, van Gunsteren WF (1998) On using time-averaging restraints in molecular dynamics simulation. J Biomol NMR 12:501–508

    Article  Google Scholar 

  • Spronk CAEM, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Mag Res Spec 45:315–337

    Article  Google Scholar 

  • Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from n-15 NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  Google Scholar 

  • Torda AE, Scheek RM, van Gunsteren WF (1989) Time averaged distance restraints in molecular dynamics simulations. Chem Phys Lett 157:289–294

    Article  ADS  Google Scholar 

  • Torda AE, Scheek RM, van Gunsteren WF (1990) Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J Mol Biol 214:223–235

    Article  Google Scholar 

  • Vendruscolo M, Dobson CM (2005) Towards complete descriptions of the free-energy landscapes of proteins. Phil Trans R Soc A 363:433–450

    Article  ADS  Google Scholar 

  • Vendruscolo M, Paci E (2003) Protein folding: Bringing theory and experiment closer together. Curr Opin Struct Biol 13:82–87

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  Google Scholar 

  • Wand AJ (2001) Dynamic activation of protein function: A view emerging from NMR spectroscopy. Nat. Struct Biol 8:926–931

    Article  Google Scholar 

  • Wang T, Cai S, Zuiderweg ERP (2003) Temperature dependence of anisotropic protein backbone dynamics. J Am Chem Soc 125:8639–8643

    Article  Google Scholar 

  • Wong CF, McCammon JA (2003) Protein flexibility and computer-aided drug design. Annu Rev Pharmacol Toxicol. 43:31–45

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. New York, Wiley

    Google Scholar 

  • Zagrovic B, van Gunsteren WF (2006) Comparing atomistic simulation data with the NMR experiment: How much can NOEs actually tell us?. Proteins 63:210–218

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF, the Leverhulme Trust and by the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Vendruscolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, B., Gsponer, J., Várnai, P. et al. The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J Biomol NMR 37, 117–135 (2007). https://doi.org/10.1007/s10858-006-9117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9117-7

Keywords

Navigation