Skip to main content
Log in

Extended Flip-back Schemes for Sensitivity Enhancement in Multidimensional HSQC-type Out-and-back Experiments

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In many NMR experiments, only polarisation of a limited sub-set of all protons is converted into observable coherence. As recently shown by the “longitudinal” TROSY implementation (Pervushin et al. (2002) J. Am. Chem. Soc., 124, 12898–12902) and SOFAST-HMQC (Schanda and Brutscher (2005) J. Am. Chem. Soc., 127, 8014–8015), recovery of unused polarisation can be used indirectly and unspecifically to cool the proton lattice and, thus, accelerate re-equilibration for the selected proton subset. Here we illustrate transfer of this principle to HSQC-based multi-dimensional out-and-back experiments that exploit only polarisation of 15N-bound protons. The presented modifications to the pulse sequences can be implemented broadly and easily, extending standard flip-back of water polarisation to a much larger pool of protons that may comprise all non−15N-bound protons. The underlying orthogonal separation of HN polarisation (selected by the main transfer path) from unused Hu polarisation (flipped-back on the recovery path) is thereby achieved through positive or negative selection by J-coupling, or using band-selective pulses. In practice, Hu polarisation recovery degrades mostly through cumulative pulse imperfections and transverse relaxation; we present, however, strategies to substantially minimise such losses particularly during interim proton decoupling. Depending on the protein’s relaxation properties and the extended flip-back scheme employed, we recovered up to 60% Hu equilibrium polarisation. The concomitant cooling of the proton lattice afforded substantial gains of more than 40%, relative to the water-only flip-back version, in the fast pulsing regime with re-equilibration delays τ much shorter than optimal (τopt = 1.25 · T1(HN)). These would be typically employed if resolution requirements dominate the total measurement time. Contrarily, if sensitivity is limiting and optimal interscan delays τopt can be set (optimal pulsing regime), the best of the presented flip-back schemes may still afford up to ca. 10% absolute sensitivity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bsfb:

band-selective flip-back

cpd:

continuous pulsing decoupling

efb:

extended flip-back

Hu:

unselected proton magnetisation

HCfb:

HCflip-back

ufb:

universal flip-back

wfb:

water flip-back

References

  • A. Abragam (1961) NoChapterTitle R.K. Adair R.J. Elliott W.C. Marshall D.H. Wilkinson (Eds) Principles of Nuclear Magnetism. The International Series of Monographs on Physics Clarendon Press Oxford/UK

    Google Scholar 

  • L. Braunschweiler R.R. Ernst (1983) J. Magn. Reson. 53 521–528 Occurrence Handle1:CAS:528:DyaL3sXks1eju7c%3D

    CAS  Google Scholar 

  • L. Emsley G. Bodenhausen (1992) J. Magn. Reson. 97 135–148 Occurrence Handle1:CAS:528:DyaK38XhvVKgsLc%3D

    CAS  Google Scholar 

  • R.R. Ernst G. Bodenhausen A. Wokaun (1987) NoChapterTitle J.S. Rowlinson (Eds) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. The International Series of Monographs on Chemistry NumberInSeries14 Clarendon Press Oxford/UK

    Google Scholar 

  • J. Furrer F. Kramer J.P. Marino S.J. Glaser B. Luy (2004) J. Magn. Reson. 166 39–46 Occurrence Handle10.1016/j.jmr.2003.09.013 Occurrence Handle1:CAS:528:DC%2BD3sXpvVWltbs%3D

    Article  CAS  Google Scholar 

  • H. Geen R. Freeman (1991) J. Magn. Reson. 93 93–141

    Google Scholar 

  • T. Gullion D. Baker M.S. Conradi (1990) J. Magn. Reson. 89 479–484 Occurrence Handle1:CAS:528:DyaK3MXhs1ejug%3D%3D

    CAS  Google Scholar 

  • K. Hallenga G.M. Lippens (1995) J. Biomol. NMR 5 59–66 Occurrence Handle1:CAS:528:DyaK2MXjtlyju70%3D

    CAS  Google Scholar 

  • S. Hiller G. Wider T. Etezady-Esfarjani R. Horst K. Wüthrich (2005) J. Biomol. NMR 32 61–70 Occurrence Handle10.1007/s10858-005-3070-8 Occurrence Handle1:CAS:528:DC%2BD2MXmsVOqsrY%3D

    Article  CAS  Google Scholar 

  • L.E. Kay G.Y. Xu T. Yamazaki (1994) J. Magn. Reson. A109 129–133

    Google Scholar 

  • M.H. Levitt (1982) J. Magn. Reson. 48 234–264 Occurrence Handle1:CAS:528:DyaL38XktlamsL4%3D

    CAS  Google Scholar 

  • S. Ludvigsen H. Shen M. Kjaer J.C. Madsen F.M. Poulsen (1991) J. Mol. Biol. 222 621–635 Occurrence Handle10.1016/0022-2836(91)90500-6 Occurrence Handle1:CAS:528:DyaK38Xht1ektLY%3D

    Article  CAS  Google Scholar 

  • S. Meiboom D. Gill (1958) Rev. Sci. Instrum. 29 688–691 Occurrence Handle10.1063/1.1716296 Occurrence Handle1:CAS:528:DyaF3cXosFWitQ%3D%3D

    Article  CAS  Google Scholar 

  • K. Pervushin B. Vögeli A. Eletsky (2002) J. Am. Chem. Soc. 124 12898–12902 Occurrence Handle10.1021/ja027149q Occurrence Handle1:CAS:528:DC%2BD38XnsVeksLw%3D

    Article  CAS  Google Scholar 

  • R. Riek J. Fiaux E.B. Bertelsen A.L. Horwich K. Wüthrich (2002) J. Am. Chem. Soc. 124 12144–12153 Occurrence Handle10.1021/ja026763z Occurrence Handle1:CAS:528:DC%2BD38XntFSis7g%3D

    Article  CAS  Google Scholar 

  • M. Sattler J. Schleucher C. Griesinger (1999) Progr. NMR Spectr. 34 93–158 Occurrence Handle1:CAS:528:DyaK1MXisF2jsbk%3D

    CAS  Google Scholar 

  • P. Schanda B. Brutscher (2005) J. Am. Chem. Soc. 127 8014–8015 Occurrence Handle10.1021/ja051306e Occurrence Handle1:CAS:528:DC%2BD2MXktFCgtrc%3D

    Article  CAS  Google Scholar 

  • A.J. Shaka P.B. Barker R. Freeman (1985) J. Magn. Reson. 64 547–552 Occurrence Handle1:CAS:528:DyaL2MXmt1KjtLs%3D

    CAS  Google Scholar 

  • A.J. Shaka J. Keeler T. Frenkiel R. Freeman (1983) J. Magn. Reson. 52 335–338 Occurrence Handle1:CAS:528:DyaL3sXhvFSntrk%3D

    CAS  Google Scholar 

  • A.J. Shaka C.J. Lee A. Pines (1988) J. Magn. Reson. 77 274–293

    Google Scholar 

  • T.E. Skinner T.O. Reiss B. Luy N. Khaneja S.J. Glaser (2004) J. Magn. Reson. 167 68–74 Occurrence Handle10.1016/j.jmr.2003.12.001 Occurrence Handle1:CAS:528:DC%2BD2cXhsFeltrw%3D

    Article  CAS  Google Scholar 

  • V. Sklenar (1995) J. Magn. Reson. A114 132–135

    Google Scholar 

  • V. Sklenar M. Piotto R. Leppik V. Saudek (1993) J. Magn. Reson. A102 241–245

    Google Scholar 

  • M. Smith H. Hu A.J. Shaka (2001) J. Magn. Reson. 151 269–283 Occurrence Handle10.1006/jmre.2001.2364 Occurrence Handle1:CAS:528:DC%2BD3MXmsVGisLc%3D

    Article  CAS  Google Scholar 

  • R. Tycko A. Pines (1984) Chem. Phys. Lett. 111 462–467 Occurrence Handle10.1016/0009-2614(84)85541-4 Occurrence Handle1:CAS:528:DyaL2cXmtl2iurs%3D

    Article  CAS  Google Scholar 

  • M. Zweckstetter T.A. Holak (1999) J. Biomol. NMR 15 331–334 Occurrence Handle10.1023/A:1008360013567 Occurrence Handle1:CAS:528:DC%2BD3cXhtFChsrY%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammo Diercks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diercks, T., Daniels, M. & Kaptein, R. Extended Flip-back Schemes for Sensitivity Enhancement in Multidimensional HSQC-type Out-and-back Experiments. J Biomol NMR 33, 243–259 (2005). https://doi.org/10.1007/s10858-005-3868-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-3868-4

Keywords

Navigation