Skip to main content

Advertisement

Log in

Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Greenberg EP, Costerton JW. Stewart PS, Bacterial biofilms: a common cause of persistent infections. Science. 1999;5418:1318–22.

    Google Scholar 

  2. Darouiche RO. Treatment of infections associated with surgical implants. N Engl Jed. 2004;350:1422–9.

    Article  Google Scholar 

  3. Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Mic. 2010;59:227–38.

    Article  Google Scholar 

  4. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(2):3–14.

    Article  Google Scholar 

  5. Dunne WM. Bacterial adhesion: seen any good biofilmslately? Clin Microbiol Rev. 2002;15:155–66.

    Article  Google Scholar 

  6. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromol. 2005;6(2):561–5.

    Article  Google Scholar 

  7. TianP-Y, Shang L, Ren H, Mi Y, Fan D-D, Jiang M. Biosynthesis of polyhydroxyalkanoates: Current. Afr J Biotechnol. 2009;180:709–714.

  8. Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology chem. Biochem Eng Q. 2015;29(2):275–85.

    Article  Google Scholar 

  9. Korsatko VW, Wabnegg B, Tillian HM, Egger G, Pfragner R, Walser V. Poly-D-(-)-3-hydroxybutyric acid (poly-HBA) a biodegradable polymer for long term medication dosage. 3. Studies on biocompatibility opoly-HBA implantation tablets in tissue culture and animals. Pharm Ind. 1984;46:952.

    Google Scholar 

  10. Williamson DH, Mellanby J, Krebs HA. Enzymic determination of D(-)-β-hydroxybutyric acid acetoacetic acid in blood. Biochem J. 1961;82(1):90–6.

    Article  Google Scholar 

  11. Wang Y-W, Yang F, Wu Q, Cheng I-C, Yu PHF, Chen J, Chen G-Q. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomat. 2005;26:755–761.

  12. Huag H-S, Chou S-H, Dona T-M, Lai W-C. Formation of microporous poly(hydroxybutyric acid) membranes for culture of osteoblast and fibroblast. Polym Adv Technol. 2009;20:1082–1090.

  13. Rodríguez-Contreras AM, Canal-Barnils C, Calafell-Monfort M, Ginebra-Molins M-P, Julio-Morán G, Marqués-Calvo MS. Methods for the preparation of doxycycline-loaded phb micro- and nano-spheres. European Pol J. 2013;49:3501–3511.

  14. Chen G-Q. Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. Plastics from Bacteria: Natural Functions and Applications. New York: 2010;6:17–37.

  15. Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces. J Biomed Mat Res. 2000;51(3):343–51.

    Article  Google Scholar 

  16. Mondal M, De S. Characterization and antifouling properties of polyethylene glycol doped PAN–CAP blend membrane. RSC Adv. 2015;5:38948–63.

    Article  Google Scholar 

  17. Dalsin JL, Messersmith PB. Bioinspired antifouling polymers. Mater Today 2005; 38–46.

  18. Jeon SI, Andrade JD. Protein-surface interactions in the presence of polyethylene oxide: II effect of protein size. Colloid Interf Sci. 1991;142:159–66.

    Article  Google Scholar 

  19. Gref R, Lück M, Quelle P, Marchan M, Dellacheri E, Harnisch S, Blunke T, Müller RH. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18:301–13.

    Article  Google Scholar 

  20. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mate. 2011;23:690–718.

    Article  Google Scholar 

  21. P. Sevilla-Sánchez, Functionalization of titanium surfaces with TGF-beta inhibitor peptides. PhD thesis. Universitat Politècnica de Catalunya-Barcelona TECH, Barcelona, Spain, (2013).

  22. Rodríguez-Hernández MJ, Cuberos L, Pichardo C, Caballero FJ, Moreno I, Jiménez-Mejías ME, García-Curiel A, Pachón J. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J Antimicrobial Chemotherapy. 2011;47(4):479–82.

    Article  Google Scholar 

  23. Balwanz WW. Plasma Cleaning of Surfaces. Surface Contamination Genesis, Detection, and Control, New York; 1979; 255–269.

  24. Paredes V, Salvagni E, Rodriguez E, Gil J, Manero JM. Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy. J Mat Sci Mater Med. 2013;25(2):311–20.

    Article  Google Scholar 

  25. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Materm Res. 1996;32:409–17.

    Article  Google Scholar 

  26. Wang XX, Hayakawa S, Tsuru K, Osaka A, Improvement of the bioactivity of H2O2/TaCl5-treated Ti after a subsequent heat treatment. J Biomed Mater Res 2000; 171–176.

  27. Pattanayak DK, Yamaguchi S, Matsushita T, Kokubo T. Nanostructured positively charged bioactive TiO2 layer formed on Ti metal by NaOH, acid and heat treatment. J Mater Sci Mater in Medicine. 2011;22:1803–12.

    Article  Google Scholar 

  28. Lindahl C, Engqvist H, Xia W. Influence on surface treatments on the bioactivity of Ti. ISRN Biomat 2013; 1–13.

  29. Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater. 2010;20(11):1767–77.

    Article  Google Scholar 

  30. Chan R, Marcal H, Russell RA, Holden PJ, Foster LJ. Application of polyethylene glycol to promote cellular biocompatibility of polyhydroxybutyrate films. Int J Pol Sci 2011;1–9.

  31. Sevilla P, Godoy M, Salvagni E, Rodriguez D, Gil FJ. Biofunctionalization of titanium surfaces for osseintegration process improvement. J. Physics Conf Series. 2010;252:012009.

    Article  Google Scholar 

  32. Wang Y-Y, Liu LX, Shi JC, Wang H-F, Xiao Z-D, Huang N-P. Introducing RGD peptides on PHBV Films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromol. 2011;12:551–9.

    Article  Google Scholar 

  33. Gharechahi M, Moosavi H, Forghani M. Effect of surface roughness and materials composition on biofilm formation. J Biomat Nanobiotech. 2012;3:541–6.

    Article  Google Scholar 

  34. Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C. 2012;116(10):6289–97.

    Article  Google Scholar 

  35. Nalawade TM, Bhat K, Sogi SHP. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. J Int Soc Prev Commun Dent. 2015;5(2):114–9.

    Article  Google Scholar 

  36. Bonartsev A, Yakovlev S, Boskhomdzhiev A, Zharkova I, Bagrov D, Myshkina V, Mahina T, Kharitonova E, Samsonova O, Zernov A, Zhuikov V, Efremov Y, Voinova V, Bonartseva G, Shaitan K. The terpolymer produced by azotobacter chroococcum 7B: effect of surface properties on cell attachment. PLoS One. 2013;8(2):e57200.

    Article  Google Scholar 

  37. Bonartsev AP, Yakovlev SG, Zharkova II, Boskhomdzhiev AP, Bagrov DV, Myshkina VL, Makhina TK, Kharitonova EP, Samsonova OV, Feofanov AV, Voinova VV, Zernov AL, Efremov YM, Bonartseva GA, Shaitan KV, Kirpichnikov MP. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem. 2013;14:1–12.

    Article  Google Scholar 

  38. Truica-Marasescu F, Wertheimer M. Nitrogen rich plasma polymer films for biomedical applications plasma processes pol. 2008;5:44–57.

    Google Scholar 

  39. Chaudhary SB, Vives MJ, Basra SK, Reiter MF. Postoperative spinal wound infections and postprocedural diskitis. J Spinal Cord Med. 2007;30(5):441–51.

    Google Scholar 

  40. Herranz-Diez C, Lib Q, Lamprecht C, Mas-Moruno C, Neubauerd S, Kessler H, Manero JM, Guillem-Marti J, Selhuber-Unkel C. Bioactive compounds immobilized on Ti and TiNbHf: aFM-basedinvestigations of biofunctionalization efficiency and cell adhesion. Col Surf B: Biointerf. 2015;136:704–11.

    Article  Google Scholar 

  41. Paredes V, Salvagni E, Rodríguez-Castellón E, Gil FJ, Manero JM. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti–Nb–Hf alloy. J Biomed Mater Res Part B. 2015;103B:495–502.

    Article  Google Scholar 

  42. Fernandes JG, Correia DM, Botelhon G, Padrão J, Dourado F, Ribeiro C, Lanceros-Méndez S, Sencadas V. PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Pol Testing. 2014;34:64–71.

    Article  Google Scholar 

  43. Shrivastav A, Kim H-Y, Kim Y-R. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System. BioMed Research Int 2013;12.

  44. Wang Y-W, Wu Q, Chen G-Q. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomat. 2004;25:669–75.

    Article  Google Scholar 

  45. Chen C, Cheng YC, Yu CH, Chan SW, Cheung MK, Yu PH. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res Part A. 2008;87(2):290–8.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Economy and Competitiveness (MINECO) of the Spanish Government (Project: MAT2012-30706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Rodríguez-Contreras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Contreras, A., Marqués-Calvo, M.S., Gil, F.J. et al. Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications. J Mater Sci: Mater Med 27, 124 (2016). https://doi.org/10.1007/s10856-016-5723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5723-4

Keywords

Navigation