Skip to main content

Advertisement

Log in

Dissolution and drug release profiles of phosphate glasses doped with high valency oxides

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper investigates phosphate glasses incorporating vanadium and molybdenum oxides for effective management of dissolution and drug release. These glass formulations are found to reduce the rate of dissolution from the glass surfaces. The drug functional groups of vancomycin molecules loaded by immersion showed stronger hydrogen bonding with Vanadium doped glasses and consequently lower rate of drug release over 2 weeks indicating better surface attachment with the drug molecules and slow drug release profiles. This can be explained by the strong adherence of drug molecules to glass surfaces compared with the molybdenum containing glasses (PM5 and PM10). The strong attachment relates to hydrogen bonding between the amino-functional groups of vancomycin and the hydrated P–O–H groups in the glass network. In conclusion, the rate of dissolution of doped glasses and the rate of drug release can be administered to deliver the drug molecules over weeks.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El-Meliegy E, Noort RV. Glasses and glass ceramics for medical applications. London: Springer; 2012.

    Book  Google Scholar 

  2. Baksh D, Davies JE. Design strategies for 3-dimensional in vitro bone growth in tissue-engineering scaffolds. In: Davies JE, editor. Bone engineering. Toronto: Interrobang Cgraphic Design Inc.; 2000. p. 488–95.

    Google Scholar 

  3. Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials. 2004;25(3):501–7.

    Article  Google Scholar 

  4. Navarro M, Clement J, Ginebra MP, Martınez S, Avila G, Planell JA. Improvement of the stability and mechanical properties of resorbable phosphate glasses by the addition of TiO2. Proceedings of the 14th international symposium on ceramics in medicine, Bioceramics 14, Palms Springs; 2002. p. 275–8.

  5. Zhang Y, Lopes MA, Santos JD. Bioceramics. Key Eng Mater. 2000;192:643.

    Google Scholar 

  6. Uo M, Mizuno M, Kuboki Y, Makishima A, Watari F. Biomaterials. 1998;19:2277.

    Article  Google Scholar 

  7. Drake CF, Allen WM. Biochem Soc Trans. 1985;13:516.

    Article  Google Scholar 

  8. Bhaskar SN, Brady JM, Getter L, Grower MF, Driskell T. Oral Surg. 1971;32:336.

    Article  Google Scholar 

  9. Burnie J, Gilchrist T, Duff SRI, Drake CF, Harding NGL, Malcom AJ. Biomaterials. 1981;2:244.

    Article  Google Scholar 

  10. Ploska U, Berger G. Biomaterials. 1997;18(24):1671.

    Article  Google Scholar 

  11. Knowles JC, Franks K, Abrahams I. Biomaterials. 2001;22(23):3091.

    Article  Google Scholar 

  12. Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J. Biomaterials. 2002;23(3):751.

    Article  Google Scholar 

  13. Pickup DM, Newport RJ, Knowles JC. Sol–gel phosphate-based glass for drug delivery applications. J Biomater Appl. 2012;26(5):613–22.

    Article  Google Scholar 

  14. Sanzana ES, Navarro M, Macule F, Suso S, Planell JA, Ginebra MP. Of the in vivo behaviour of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008;4(6):1924–33.

    Article  Google Scholar 

  15. Kioseoglou E, Salifoglou A. J Agroaliment Process Technol. 2011;17:239–41.

    Google Scholar 

  16. Heyliger CE, Tahiliani AG, Mcneill JH. Science. 1985;227:1474.

    Article  Google Scholar 

  17. Maniatakou A, Karaliota S, Mavri M, Raptopoulou CP, Terzis A, Karaliota A. J Inorg Biochem. 2009;103:859–68.

    Article  Google Scholar 

  18. Ghauri MA, Siddiqi SA, Shah WA, Ashiq MGB, Iqbal M. Optical properties of zinc molybdenum phosphate glasses. J Non-Cryst Solids. 2009;355(50–51):2466–71.

    Article  Google Scholar 

  19. Grzywa M, Nitek W, Lasocha W. Synthesis, characterization and crystal structures of three dinuclear diperoxo complexes of Mo(VI): K2{O[MoO(O2)2H2O]2}2H2O, (C6H8N,NH4){O[MoO(O2)2H2O]2} and (C6H8N,Na){O[MoO(O2)2H2O]2}. J Mol Struct. 2008;888(1–3):318–26.

    Article  Google Scholar 

  20. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  21. Dietzel AZ. Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten. Z Elektrochem. 1942;48:9–23.

    Google Scholar 

  22. Zavalij PY, Whittingham MS. Acta Crystallogr. 1999;B55:627.

    Article  Google Scholar 

  23. Abo-Naf SM, Ghoneim NA, El-Batal HA. J Mater Sci: Mater Electron. 2004;15:273.

    Google Scholar 

  24. Rafiqul Md. Ahsan, M. Golam Mortuza. J Non-Cryst Solids. 2005;351:2333.

    Article  Google Scholar 

  25. ElBatal FH, Marzouk MA, Abdelghany AM. UV–visible and infrared absorption spectra of gamma irradiated V2O5-doped in sodium phosphate, lead phosphate, zinc phosphate glasses: a comparative study. J Non-Cryst Solids. 2011;357:1027–36.

    Article  Google Scholar 

  26. Kader AA, Higazy AA, Elkholy MM. J Mater Sci: Matter Electron. 1991;2(3):157–63.

    Google Scholar 

  27. Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ. A structural study of sol–gel and melt-quenched phosphate-based glasses. J Non-Cryst Solids. 2007;353:1759.

    Article  Google Scholar 

  28. Shih PY. Properties and FTIR spectra of lead phosphate glasses for nuclear waste immobilization. Mater Chem Phys. 2003;80:299.

    Article  Google Scholar 

  29. Pavic L, Milankovic AM, Rao PR, Santic A, Kumar VR, Veeraiah N. J Alloys Compd. 2014;604:352–62.

    Article  Google Scholar 

  30. Abou Neel EA, Chrzanowski W, Valappil SP, O’Dell LA, Pickup DM, Smith ME, et al. Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non-Cryst Solids. 2009;355:991.

    Article  Google Scholar 

  31. Shaim A, Et-tabirou M. Mater Chem Phys. 2003;80:63–7.

    Article  Google Scholar 

  32. Saout LG, Simon P, Fayon F, Blin A, Vaills Y. J Raman Spectrosc. 2002;33:740–6.

    Article  Google Scholar 

  33. Karabulut M, Metwalli E, Day DE, Brow RK. Mossbauer and IR investigations of iron ultraphosphate glasses. J Non-Cryst Solids. 2003;328:199.

    Article  Google Scholar 

  34. Delahaye F, Montagne L, Palavit G, Touray JC, Baillif P. Acid dissolution of sodium–calcium metaphosphate glasses. J Non-Cryst Solids. 1998;242:25–32.

    Article  Google Scholar 

  35. Fernandez E, Gil FJ, Ginebra MP, et al. Calcium phosphate bone cements for clinical applications: Part 1. Solution chemistry. J Mater Sci: Mater Med. 1999;10:169–76.

    Google Scholar 

  36. Hench LL. Physical chemistry of glass surfaces. J Non-Cryst Solids. 1977;25:343–69.

    Article  Google Scholar 

  37. Isard JO, Allnatt AR, Melling PJ, et al. An improved model of glass dissolution. Phys Chem Glasses. 1982;23(6):185–9.

    Google Scholar 

  38. Zhu M, Zhang J, Tao C, He X, Zhu Y. Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater Lett. 2014;115:194–7.

    Article  Google Scholar 

  39. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  Google Scholar 

  40. Korsmeyer RW, Gurney R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  Google Scholar 

  41. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.

    Google Scholar 

Download references

Acknowledgments

This project is supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No: 5150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. El-Meliegy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Meliegy, E., Farag, M.M. & Knowles, J.C. Dissolution and drug release profiles of phosphate glasses doped with high valency oxides. J Mater Sci: Mater Med 27, 108 (2016). https://doi.org/10.1007/s10856-016-5711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5711-8

Keywords

Navigation