Skip to main content

Advertisement

Log in

Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)–functionalized poly(ethylene glycol)–poly(propylene succinate) (PEG–PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by 1H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC–UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5 %) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA–PEG–PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG–PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA–PEG–PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. European Medicines Agency, Evaluation of Medicines for Human Use, Ixempra Withdrawal Assessment Report—EUROPA—EU website PDF (2009). http://www.ema.europa.eu/docs/en_GB/document_library/Application_withdrawal_assessment_report/2010/01/WC500062429.pdf.

  2. Denduluri N, Swain S. Ixabepilone: clinical role in metastatic breast cancer. Clin Breast Canc. 2011;11(3):139–45.

    Article  Google Scholar 

  3. Fornier MN. Ixabepilone first in a new class of antineoplastic agents: the natural epothilones and their analogues. Clin Breast Canc. 2007;7(10):757–63.

    Google Scholar 

  4. Xu XS, Zeng J, Mylott W, Arnold M, Waltrip J, Iacono L, Mariannino T, Stouffer B. Liquid chromatography and tandem mass spectrometry for the quantitative determination of ixabepilone (BMS-247550, IxempraTM) in human plasma: method validation, overcoming curve splitting issues and eliminating chromatographic interferences from degradants. J Chromatogr B. 2010;878(5–6):525–37.

    Article  Google Scholar 

  5. Magadala P, LE Vlerken, Shahiwala A, Amiji MM. Multifunctional polymeric nanosystems for tumor-targeted delivery. In: Torchilin VP, editor. Multifunctional pharmaceutical nanocarriers, vol. 4. New York: Springer; 2008. p. 33–64.

    Chapter  Google Scholar 

  6. Kumagai Y, Doi Y. Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxybutyrate) with poly(e-caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate). Polym Degrad Stab. 1992;36:241–8.

    Article  Google Scholar 

  7. Bikiaris D, Karavelidis V, Karavas E. Effectiveness of various drug carriers in controlled release formulations of raloxifene HCl prepared by melt mixing. Curr Drug Delivery. 2009;6(5):425–36.

    Article  Google Scholar 

  8. Bikiaris DN, Papageorgiou GZ, Papadimitriou SA, Karavas E, Avgoustakis K. Novel biodegradable polyester poly(propylene succinate): synthesis and application in the preparation of solid dispersions and nanoparticles of a water-soluble drug. AAPS Pharm Sci Tech. 2009;10(1):138–46.

    Article  Google Scholar 

  9. Bikiaris DN, Papageorgiou GZ, Achilias DS. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym Degrad Stab. 2006;91(1):31–43.

    Article  Google Scholar 

  10. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081–92.

    Article  Google Scholar 

  11. Chan P, Kurisawa M, Chung JE, Yang YY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials. 2007;28(3):540–9.

    Article  Google Scholar 

  12. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–50.

    Article  Google Scholar 

  13. Du ZX, Xu JT, Yang Y, Fan ZQ. Synthesis and characterization of Poly(e-caprolactone)-poly(ethylene glycol) block copolymers prepared by a salicylaldimine-aluminum complex. J Appl Polym Sci. 2007;105(2):771–6.

    Article  Google Scholar 

  14. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  Google Scholar 

  15. Kyriakopoulou S, Mattheolabakis G, Papadimitriou S, Karavas E, Bikiaris D, Avgoustakis K. PPSu-PEG copolymers and their application in the preparation of cisplatin-loaded nanoparticles. Curr Nanosc. 2011;7:503–9.

    Article  Google Scholar 

  16. Tong R, Cheng J. Anticancer polymeric nanomedicines. Polym Rev. 2007;47:345–81.

    Article  Google Scholar 

  17. Vassiliou AA, Papadimitriou SA, Bikiaris DN, Mattheolabakis G, Avgoustakis K. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. J Control Release. 2010;148:388–95.

    Article  Google Scholar 

  18. Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Exp Opin Drug Deliv. 2006;3(2):205–16.

    Article  Google Scholar 

  19. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA. 2010;107:1235–40.

    Article  Google Scholar 

  20. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotech Biol Med. 2012;8(2):147–66.

    Article  Google Scholar 

  21. Wang S, Luo Y, Zeng S, Luo C, Yang L, Liang Z, Wang Y. Dodecanol-poly(d, l-lactic acid)-b-poly (ethylene glycol)-folate (Dol-PLA-PEG-FA) nanoparticles: evaluation of cell cytotoxicity and selecting capability in vitro. Colloid Surf B. 2013;102:130–5.

    Article  Google Scholar 

  22. Cho K, Wang X, Nie S, Hu X, Yan L, Xiao H, Li X, Jing X. Application of Microwave-Assisted Click Chemistry in the Preparation of Functionalized Copolymers for Drug Conjugation. J Appl Chem. 2013;127(5):3365–73.

    Google Scholar 

  23. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  Google Scholar 

  24. Zhu J, Zhou Z, Yang C, Kong D, Wan Y, Wang Z. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers. J Biomed Mat Res. A. 2011;97(4):498–508.

    Article  Google Scholar 

  25. Gupta MC. Atomic and molecular spectroscopy. New Delhi: S. Chand Co; 2003. p. 235–9.

    Google Scholar 

  26. Anderson KA, Stevenson BR, Rogers J. Folic acid–PEO-labeled liposomes to improve gastrointestinal absorption of encapsulated agents. J Control Rel. 1999;60(2–3):189–98.

    Article  Google Scholar 

  27. Papadimitriou S, Bikiaris D. Novel self-assembled core–shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Rel. 2009;138(2):177–84.

    Article  Google Scholar 

  28. Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin Cancer Res. 2008;14(5):1310–6.

    Article  Google Scholar 

  29. Chen Z, Shin DM. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin Cancer Res. 2008;14(5):1310–6.

    Article  Google Scholar 

  30. Moghimi SM, Hunter AC. MurrayJC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    Google Scholar 

  31. Moreno-Vega A-I, Gómez-Quintero T, Nuñez-Anita R-E, Acosta-Torres L-S, Castaño V. Polymeric and ceramic nanoparticles in biomedical applications. J Nanotech. 2012;2012:1–10.

    Article  Google Scholar 

  32. Gref R, Minamitake Y, Peracchia MT, Trebetskoy VS, Torchilin VP, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    Article  Google Scholar 

  33. Karavelidis V, Karavas E, Giliopoulos D, Papadimitriou S, Bikiaris D. Evaluating the effects of crystallinity of new biocompatible polyester nanocarriers on drug release behaviour. Int J Nanomed. 2011;6:3021–32.

    Google Scholar 

  34. Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactoneco-lactide) nanoparticles and their biodistribution in mice. J Control Rel. 2004;96(1):135–48.

    Article  Google Scholar 

  35. Cobham MV, Donovan D. Ixabepilone: a new treatment option for the management of taxane-resistant metastatic breast cancer. Canc Manag Res. 2009;1:69–77.

    Google Scholar 

  36. Filippousi M, Papadimitriou SA, Bikiaris DN, Pavlidou EN, Angelakeris M, Zamboulis D, Tian H, Van Tendeloo G. Novel core–shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: preparation, characterization and release properties. Int J Pharm. 2013;448:221–30.

    Article  Google Scholar 

  37. Huang X, Brazel C. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Contr Rel. 2001;73:121–36.

    Article  Google Scholar 

  38. Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang C. Preparation, characterization and drug release behaviours of drug nimodipine-loaded poly(caprolactone)–poly(ethylene oxide)–poly(caprolactone) amphiphilic triblock copolymer micelles. J Pharmac Sci. 2002;91(6):1463–73.

    Article  Google Scholar 

  39. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge co-funding of this research by European Union-European Regional Development Fund and Greek Ministry of Εducation/EYDE-ETAK through program ESPA 2007-2013/EPAN II/Action “SYNERGASIA” (09SYN-41-659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bikiaris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siafaka, P., Betsiou, M., Tsolou, A. et al. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J Mater Sci: Mater Med 26, 275 (2015). https://doi.org/10.1007/s10856-015-5609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5609-x

Keywords

Navigation