Skip to main content

Advertisement

Log in

Ti–O–N/Ti composite coating on Ti–6Al–4V: surface characteristics, corrosion properties and cellular responses

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To enhance the corrosion resistance of Ti–6Al–4V and extend its lifetime in medical applications, Ti–O–N/Ti composite coating was synthesized on the surface via plasma immersion ion implantation and deposition (PIIID). Surface morphology and cross sectional morphology of the composite coating were characterized using atomic force microscopy and scanning electron microscopy, respectively. Although X-ray photoelectron spectroscopic analysis revealed that the Ti–O–N/Ti composite coating was composed of non-stoichiometric titanium oxide, titanium nitride and titanium oxynitride, no obvious characteristic peak corresponding to the crystalline phases of them was detected in the X-ray diffraction pattern. In accordance with Owens–Wendt equation, surface free energy of the uncoated and coated samples was calculated and compared. Moreover, the corrosion behavior of uncoated and coated samples was evaluated by means of electrochemical impedance spectroscopy measurement, and an equivalent circuit deriving from Randles model was used to fit Bode plots and describe the electrochemical processes occurring at the sample/electrolyte interface. On the basis of the equivalent circuit model, the resistance of the composite coating was 4.7 times higher than that of the passive layer on uncoated samples, indicating the enhanced corrosion resistance after PIIID treatment. Compared to uncoated Ti–6Al–V, Ti–O–N/Ti-coated samples facilitated ostoblast proliferation within 7 days of cell culture, while there was no statistically significant difference in alkaline phosphate activity between uncoated and coated samples during 21 days of cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  Google Scholar 

  2. Park YG, Wey MY, Hong SI. Enhanced wear and fatigue properties of Ti–6Al–4V alloy modified by plasma carburizing/CrN coating. J Mater Sci. 2007;18:925–31.

    Google Scholar 

  3. Gil FJ, Delgado L, Espinar E, Llamas JM. Corrosion and corrosion-fatigue behavior of cp-Ti and Ti–6Al–4V laser-marked biomaterials. J Mater Sci. 2012;23:885–90.

    Google Scholar 

  4. Rodriguez D, Manero JM, Gil FJ, Planell JA. Low cycle fatigue behavior of Ti6Al4V thermochemically nitrided for its use in hip prostheses. J Mater Sci. 2001;12:935–7.

    Google Scholar 

  5. Boyce BF, Byars J, McWilliams S, Mocan MZ, Elder HY, Boyle IT, Junor BJR. Histological and electron-microprobe studies of mineralization in aluminum-related osteomalacia. J Clin Pathol. 1992;45:502–8.

    Article  Google Scholar 

  6. Zaffe D, Bertoldi C, Consolo U. Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules. Biomaterials. 2004;25:3837–44.

    Article  Google Scholar 

  7. Eisenbarth E, Velten D, Müller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–13.

    Article  Google Scholar 

  8. Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26:1269–77.

    Article  Google Scholar 

  9. Popa AC, Stan GE, Husanu MA, Pasuk I, Popescu ID, Popescu AC, Mihailescu IN. Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering. J Mater Sci. 2013;24:2695–707.

    Google Scholar 

  10. Sun T, Wang M. Low-temperature biomimetic formation of apatite/TiO2 composite coatings on Ti and NiTi shape memory alloy and their characterization. Appl Surf Sci. 2008;255:396–400.

    Article  Google Scholar 

  11. Diangang W, Chuanzhong C, Ting H, Tingquan L. Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method. J Mater Sci. 2008;19:2281–6.

    Google Scholar 

  12. Sun T, Lee W-C, Wang M. A comparative study of apatite coating and apatite/collagen composite coating fabricated on NiTi shape memory alloy through electrochemical deposition. Mater Lett. 2011;65:2575–7.

    Article  Google Scholar 

  13. Sun T, Wang L, Yu Y, Wang Y, Wang X, Tang B. TiN/ZrO2 multilayers synthesized on GCr15 bearing steel using plasma immersion ion implantation and deposition. Surf Coat Technol. 2007;201:6615–8.

    Article  Google Scholar 

  14. da Silva LLG, Ueda M, Silva MM, Codaro EN. Corrosion behavior of Ti–6Al–4V alloy treated by plasma immersion ion implantation process. Surf Coat Technol. 2007;201:8136–9.

    Article  Google Scholar 

  15. Zheng YF, Liu D, Liu XL, Li L. Enhanced corrosion resistance of Zr coating on biomedical TiNi alloy prepared by plasma immersion ion implantation and deposition. Appl Surf Sci. 2008;255:512–4.

    Article  Google Scholar 

  16. Sun T, Wang L-P, Wang M, Tong H-W, Lu WW. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications. Mater Sci Eng C. 2012;32:1469–79.

    Article  Google Scholar 

  17. Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials. 2007;28:586–94.

    Article  Google Scholar 

  18. Sun T, Wang L-P, Wang M, Tong H-W, Lu WW. Characteristics and in vitro biological assessment of (Ti, O, N)/Ti composite coating formed on NiTi shape memory alloy. Thin Solid Films. 2011;519:4623–8.

    Article  Google Scholar 

  19. da Silva SLR, Kerber LO, Amaral L, dos Santos CA. X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V. Surf Coat Technol. 1999;116–119:342–6.

    Article  Google Scholar 

  20. Leng YX, Chen JY, Yang P, Wang J, Zhao AS, Wan GJ, Sun H, Huang N. The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve. Surf Coat Technol. 2006;201:1012–6.

    Article  Google Scholar 

  21. Jung YS, Choi YW, Lee HC, Lee DW. Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures. Thin Solid Films. 2003;440:278–84.

    Article  Google Scholar 

  22. Yang Y, Zhang C, Peng Y, Yu Y, Liu L. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros Sci. 2012;59:10–9.

    Article  Google Scholar 

  23. Shibata Y, Suzuki D, Omori S, Tanaka R, Murakami A, Kataoka Y, Baba K, Kamijo R, Miyazaki T. The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions. Biomaterials. 2010;31:8546–55.

    Article  Google Scholar 

  24. Cheng Y, Zheng YF. Surface characterization and mechanical property of TiN/Ti-coated NiTi alloy by PIIID. Surf Coat Technol. 2007;201:6869–73.

    Article  Google Scholar 

  25. Chan M-H, Lu F-H. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures. Thin Solid Films. 2009;517:5006–9.

    Article  Google Scholar 

  26. Guillot J, Chappé J-M, Heintz O, Martin N, Imhoff L, Takadoum J. Phase mixture in MOCVD and reactive sputtering TiOxNy thin films revealed and quantified by XPS factorial analysis. Acta Mater. 2006;54:3067–74.

    Article  Google Scholar 

  27. Hao L, Lawrence J, Li L. Manipulation of the osteoblast response to a Ti–6Al–4V titanium alloy using a high power diode laser. Appl Surf Sci. 2005;247:602–6.

    Article  Google Scholar 

  28. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60.

    Article  Google Scholar 

  29. Hu X, Shen H, Shuai K, Zhang E, Bai Y, Cheng Y, Xiong X, Wang S, Fang J, Wei S. Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: in vitro and in vivo studies. Appl Surf Sci. 2011;257:1813–23.

    Article  Google Scholar 

  30. Athanasiou NS. Wettability and interfacial interactions of amorphous titanium treated by ion implantation. Mod Phys Lett B. 1997;11:829–39.

    Article  Google Scholar 

  31. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–94.

    Article  Google Scholar 

  32. Fouladi M, Amadeh A. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochim Acta. 2013;106:1–12.

    Article  Google Scholar 

  33. Simka W, Kaczmarek M, Baron-Wiecheć A, Nawrat G, Marciniak J, Żak J. Electropolishing and passivation of NiTi shape memory alloy. Electrochim Acta. 2010;55:2437–41.

    Article  Google Scholar 

  34. Figueira N, Silva TM, Carmezim MJ, Fernandes JCS. Corrosion behaviour of NiTi alloy. Electrochim Acta. 2009;54:921–6.

    Article  Google Scholar 

  35. Milošev I, Metikoš-Huković M, Strehblow HH. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials. 2000;21:2103–13.

    Article  Google Scholar 

  36. Baker MA, Assis SL, Higa OZ, Costa I. Nanocomposite hydroxyapatite formation on a Ti–13Nb–13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Acta Biomater. 2009;5:63–75.

    Article  Google Scholar 

  37. Assis SL, Costa I. Electrochemical evaluation of Ti–13Nb–13Zr, Ti–6Al–4V and Ti–6Al–7Nb alloys for biomedical application by long-term immersion tests. Mater Corros. 2007;58:329–33.

    Article  Google Scholar 

  38. Liu C, Bi Q, Matthews A. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corros Sci. 2001;43:1953–61.

    Article  Google Scholar 

  39. Burgos-Asperilla L, García-Alonso MC, Escudero ML, Alonso C. Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 2010;6:652–61.

    Article  Google Scholar 

  40. Huang H-H, Wu C-P, Sun Y-S, Yang W-E, Lin M-C, Lee T-H. Surface nanoporosity of β-type Ti–25Nb–25Zr alloy for the enhancement of protein adsorption and cell response. Surf Coat Technol. 2014;. doi:10.1016/j.surfcoat.2014.02.037.

    Google Scholar 

  41. Sunny MC, Sharma CP. Fibrinogen–aluminium interaction: changes with oxide layer thickness onto metal surface. J Biomed Mater Res. 1990;24:455–62.

    Article  Google Scholar 

  42. Sharma CP, Paul W. Protein interaction with tantalum: changes with oxide layer and hydroxyapatite at the interface. J Biomed Mater Res. 1992;26:1179–84.

    Article  Google Scholar 

  43. Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol. 2013;233:147–58.

    Article  Google Scholar 

  44. Lubarsky GV, Browne MM, Mitchell SA, Davidson MR, Bradley RH. The influence of electrostatic forces on protein adsorption. Colloids Surf B. 2005;44:56–63.

    Article  Google Scholar 

  45. Huang R, Lu S, Han Y. Role of grain size in the regulation of osteoblast response to Ti–25Nb–3Mo–3Zr–2Sn alloy. Colloids Surf B. 2013;111:232–41.

    Article  Google Scholar 

  46. Misra RDK, Nune C, Pesacreta TC, Somani MC, Karjalainen LP. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates. J Biomed Mater Res A. 2013;101A:1–12.

    Article  Google Scholar 

  47. Ahmed MH, Byrne JA. Effect of surface structure and wettability of DLC and N-DLC thin films on adsorption of glycine. Appl Surf Sci. 2012;258:5166–74.

    Article  Google Scholar 

  48. McAdams ET, Lackermeier A, McLaughlin JA, Macken D, Jossinet J. The linear and non-linear electrical properties of the electrode–electrolyte interface. Biosens Bioelectron. 1995;10:67–74.

    Article  Google Scholar 

  49. Mercanzini A, Colin P, Bensadoun J-C, Bertsch A, Renaud P. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays. IEEE Trans Biomed Eng. 2009;56:1909–18.

    Article  Google Scholar 

  50. Yao Z, Jiang Z, Wang F. Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique. Electrochim Acta. 2007;52:4539–46.

    Article  Google Scholar 

  51. Feng L, Zhang H, Wang Z, Liu Y. Superhydrophobic aluminum alloy surface: fabrication, structure, and corrosion resistance. Colloids Surf A. 2014;441:319–25.

    Article  Google Scholar 

  52. Kunzler TP, Huwiler C, Drobek T, Vörös J, Spencer ND. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials. 2007;28:5000–6.

    Article  Google Scholar 

  53. Kang S, Hoek EMV, Choi H, Shin H. Effect of membrane surface properties during the fast evaluation of cell attachment. Sep Sci Technol. 2006;41:1475–87.

    Article  Google Scholar 

  54. Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL. Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide. Biomaterials. 2006;27:2201–12.

    Article  Google Scholar 

  55. Chien C-C, Liu K-T, Duh J-G, Chang K-W, Chung K-H. Effect of nitride film coatings on cell compatibility. Dent Mater. 2008;24:986–93.

    Article  Google Scholar 

  56. Orimo H, Shimada T. The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem. 2008;315:51–60.

    Article  Google Scholar 

  57. Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials. 2009;30:3542–50.

    Article  Google Scholar 

  58. Radin S, Ducheyne P. Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials. 2007;28:1721–9.

    Article  Google Scholar 

  59. Li D-H, Lin J, Lin D-Y, Wang X-X. Synthesized silicon-substituted hydroxyapatite coating on titanium substrate by electrochemical deposition. J Mater Sci. 2011;22:1205–11.

    Google Scholar 

  60. Aparicio C, Rodriguez D, Gil FJ. Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mater Sci Eng C. 2011;31:320–4.

    Article  Google Scholar 

  61. Barrabes M, Michiardi A, Aparicio C, Sevilla P, Planell JA, Gil FJ. Oxidized nickel–titanium foams for bone reconstructions: chemical and mechanical characterization. J Mater Sci. 2007;18:2123–9.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Science Foundation of China (Grant No. 51201051), an opening project (Grant No. AWPT-M10) from the State Key Lab of Advanced Welding and Joining at Harbin Institute of Technology, and a Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2012041), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Sun or Yonghao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XL., Sun, T. & Yu, Y. Ti–O–N/Ti composite coating on Ti–6Al–4V: surface characteristics, corrosion properties and cellular responses. J Mater Sci: Mater Med 26, 144 (2015). https://doi.org/10.1007/s10856-015-5413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5413-7

Keywords

Navigation