Skip to main content

Advertisement

Log in

Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Osteoblast response was evaluated with polymethylmethacrylate (PMMA)/titanium dioxide (TiO2) nanocomposite thin films that exhibit the controllable wettability with ultraviolet (UV) treatment. In this study, three samples of PMMA/TiO2 were fabricated with three different compositional volume ratios (i.e., 25/75, 50/50, and 75/25) followed by UV treatment for 0, 4, and 8 h. All samples showed the increased hydrophilicity after UV irradiation. The films fabricated with the greater amount of TiO2 and treated with the longer UV irradiation time increased the hydrophilicity more. The partial elimination of PMMA on the surface after UV irradiation created a durable hydrophilic surface by (1) exposing higher amount of TiO2 on the surface, (2) increasing the hydroxyl groups on the TiO2 surface, and (3) producing a mesoporous structure that helps to hold the water molecules on the surface longer. The partial elimination of PMMA on the surface was confirmed by Fourier transform infrared spectroscopy. Surface profiler and atomic force microscopy demonstrated the increased surface roughness after UV irradiation. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that particles containing calcium and phosphate elements appeared on the 8 h UV-treated surface of PMMA/TiO2 25/75 samples after 4 days soaking in Dulbecco’s Modified Eagle Medium. UV treatment showed the osteoblast adhesion improved on all the surfaces. While all UV-treated hydrophilic samples demonstrated the improvement of osteoblast cell adhesion, the PMMA/TiO2 25/75 sample after 8 h UV irradiation (n = 5, P value = 0.000) represented the best cellular response as compared to other samples. UV-treated PMMA/TiO2 nanocomposite thin films with controllable surface properties represent a high potential for the biomaterials used in both orthopedic and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95(11):2126–46.

    Article  Google Scholar 

  2. Nikpour M, Rabiee S, Jahanshahi M. Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites B. 2012;43(4):1881–6.

    Article  Google Scholar 

  3. Chen F, Wang Z-C, Lin C-J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett. 2002;57(4):858–61.

    Article  Google Scholar 

  4. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol. 2010;70(13):1764–76.

    Article  Google Scholar 

  5. Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  Google Scholar 

  6. Hule RA, Pochan DJ. Polymer nanocomposites for biomedical applications. MRS Bull. 2007;32(4):354–8.

    Article  Google Scholar 

  7. Lee S-C, Wu C-T, Lee S-T, Chen P-J. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci. 2009;16(1):56–63.

    Article  Google Scholar 

  8. Eppley BL. Biomechanical testing of alloplastic PMMA cranioplasty materials. J Craniofac Surg. 2005;16(1):140–3.

    Article  Google Scholar 

  9. Reichenberger MA, Stoff A, Richter DF. Polymethylmethacrylate for managing frontal bone deformities. Aesthet Plast Surg. 2007;31(4):397–400.

    Article  Google Scholar 

  10. Muramatsu K, Ihara K, Taguchi T. Treatment of giant cell tumor of long bones: clinical outcome and reconstructive strategy for lower and upper limbs. Orthopedics. 2009;32(7):491.

    Article  Google Scholar 

  11. Li SB, Zhao YM, Zhang JF, Xie C, Li DM, Tang LH, et al. Mechanical properties and microstructure of PMMA–ZrO2 nanocomposites for dental CAD/CAM. Adv Mater Res. 2013;785:533–6.

    Article  Google Scholar 

  12. Ege W, Kühn K. Industrial development of bone cement 25 years of experience. Bone Cements and Cementing Technique. New York: Springer; 2001. p. 7–14.

    Book  Google Scholar 

  13. Breusch S, Malchau H. The well-cemented total hip arthroplasty. Heidelberg, Springer; 2005.

    Book  Google Scholar 

  14. DiMaio FR. The science of bone cement: a historical review. Orthopedics. 2002;25(12):1399–407 (quiz 408–9).

    Google Scholar 

  15. Vallo CI, Montemartini PE, Fanovich MA, Lopez JMP, Cuadrado TR. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J Biomed Mater Res. 1999;48(2):150.

    Article  Google Scholar 

  16. Yang Z, Si S, Zeng X, Zhang C, Dai H. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study. Acta Biomater. 2008;4(3):560–8.

    Article  Google Scholar 

  17. Verdonschot N, Huiskes R. The effects of cement-stem debonding in THA on the long-term failure probability of cement. J Biomech. 1997;30(8):795–802.

    Article  Google Scholar 

  18. Freeman M, Bradley G, Revell P. Observations upon the interface between bone and polymethylmethacrylate cement. J Bone Joint Surg Br. 1982;64(4):489–93.

    Google Scholar 

  19. Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, et al. Bioactive polymethylmethacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass–ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res. 2000;51(2):258–72.

    Article  Google Scholar 

  20. Goto K, Shinzato S, Fujibayashi S, Tamura J, Kawanabe K, Hasegawa S, et al. The biocompatibility and osteoconductivity of a cement containing β-TCP for use in vertebroplasty. J Biomed Mater Res A. 2006;78(3):629–37.

    Article  Google Scholar 

  21. Moursi AM, Winnard AV, Winnard PL, Lannutti JJ, Seghi RR. Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials. 2002;23(1):133–44.

    Article  Google Scholar 

  22. Zhang J, Liao J, Mo A, Li Y, Li J, Wang X. Characterization and human gingival fibroblasts biocompatibility of hydroxyapatite/PMMA nanocomposites for provisional dental implant restoration. Appl Surf Sci. 2008;255(2):328–30.

    Article  Google Scholar 

  23. Chou P, Mariatti M. The properties of polymethyl methacrylate (PMMA) bone cement filled with titania and hydroxyapatite fillers. Polym Plast Technol Eng. 2010;49(12):1163–71.

    Article  Google Scholar 

  24. Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res. 2014;25(9):1041–50.

    Article  Google Scholar 

  25. Park J-W, Jang J-H, Lee CS, Hanawa T. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater. 2009;5(6):2311–21.

    Article  Google Scholar 

  26. Adam M, Ganz C, Xu WG, Sarajian HR, Frerich B, Gerber T. How to enhance osseointegration-roughness, hydrophilicity or bioactive coating. Key Eng Mater. 2012;493:467–72.

    Google Scholar 

  27. Buser D, Broggini N, Wieland M, Schenk R, Denzer A, Cochran D, et al. Enhanced bone opposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–33.

    Article  Google Scholar 

  28. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran D, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.

    Article  Google Scholar 

  29. Lincks J, Boyan B, Blanchard C, Lohmann C, Liu Y, Cochran D, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19(23):2219–32.

    Article  Google Scholar 

  30. Bächle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implant Res. 2004;15(6):683–92.

    Article  Google Scholar 

  31. Rosales-Leal J, Rodríguez-Valverde M, Mazzaglia G, Ramon-Torregrosa P, Diaz-Rodriguez L, Garcia-Martinez O, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A. 2010;365(1):222–9.

    Article  Google Scholar 

  32. Watanabe H, Saito K, Kokubun K, Sasaki H, Yoshinari M. Change in surface properties of zirconia and initial attachment of osteoblast-like cells with hydrophilic treatment. Dent Mater J. 2012;31(5):806–14.

    Article  Google Scholar 

  33. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, et al. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4(4):045002.

    Article  Google Scholar 

  34. Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, et al. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(l-lactide). Biomaterials. 2005;26(21):4453–9.

    Article  Google Scholar 

  35. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron-and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs. 2004;178(1):13–22.

    Article  Google Scholar 

  36. Schwartz Z, Nasazky E, Boyan B. Surface microtopography regulates osseointegration: the role of implant surface microtopography in osseointegration. Alpha Omegan. 2005;98(2):9–19.

    Google Scholar 

  37. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, et al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;26(33):6496–505.

    Article  Google Scholar 

  38. Goto K, Hashimoto M, Fujibayashi S, Kokubo T, Nakamura T. New bioactive bone cement containing nano-sized titania particles. Key Eng Mater. 2005;284:97–100.

    Article  Google Scholar 

  39. Goto K, Hashimoto M, Takadama H, Tamura J, Fujibayashi S, Hasegawa S, et al. Bioactive bone cements containing micron-sized titania particles. Key Eng Mater. 2006;309:793–6.

    Article  Google Scholar 

  40. Khaled S, Charpentier PA, Rizkalla AS. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J Biomater Appl. 2011;25(6):515–37.

    Article  Google Scholar 

  41. Liu J-X, Yang D-Z, Shi F, Cai Y-J. Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films. 2003;429(1):225–30.

    Article  Google Scholar 

  42. Terriza A, Díaz‐Cuenca A, Yubero F, Barranco A, González‐Elipe AR, Gonzalez Caballero JL, et al. Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO2. J Biomed Mater Res A. 2013;101(4):1026–35.

    Article  Google Scholar 

  43. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films. 1999;351(1):260–3.

    Article  Google Scholar 

  44. Yang M, Di Z, Lee J-K. Facile control of surface wettability in TiO2/poly(methyl methacrylate) composite films. J Colloid Interface Sci. 2012;368(1):603–7.

    Article  Google Scholar 

  45. Bico J, Thiele U, Quéré D. Wetting of textured surfaces. Colloids Surf A. 2002;206(1):41–6.

    Article  Google Scholar 

  46. Khung Y, Cole M, McInnes S, Voelcker N, editors. Control over wettability via surface modification of porous gradients. Microelectronics, MEMS, and Nanotechnology. International Society for Optics and Photonics; 2007.

  47. Nakata K, Nishimoto S, Kubo A, Tryk D, Ochiai T, Murakami T, et al. Fabrication and application of TiO2‐based superhydrophilic–superhydrophobic patterns on titanium substrates for offset printing. Chem Asian J. 2009;4(6):984–8.

    Article  Google Scholar 

  48. Chow T. Wetting of rough surfaces. J Phys Condens Matter. 1998;10(27):L445.

    Article  Google Scholar 

  49. Mittal KL. Advances in contact angle, wettability and adhesion. New York: Wiley; 2013.

    Book  Google Scholar 

  50. Chu C, Hu T, Wu S, Dong Y, Yin L, Pu Y, et al. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton’s oxidation. Acta Biomater. 2007;3(5):795–806.

    Article  Google Scholar 

  51. Liu X, Zhao X, Ding C, Chu PK. Light-induced bioactive TiO2 surface. Appl Phys Lett. 2006;88(1):013905.

    Article  Google Scholar 

  52. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22(1):87–96.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. CMMI-1233909. The authors also gratefully appreciate funding provided for this work by Central Research Development Fund from the University of Pittsburgh, as well as the support by Daeho Hong from Dr. Prashant Kumta’s laboratory in Bioengineering Department at the University of Pittsburgh in performing the in vitro cellular studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjae Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayan, M., Jung, Y., Huang, PS. et al. Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability. J Mater Sci: Mater Med 25, 2721–2730 (2014). https://doi.org/10.1007/s10856-014-5284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5284-3

Keywords

Navigation