Skip to main content

Advertisement

Log in

Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pabari S, Moles DR, Cunningham SJ. Assessment of motivation and psychological characteristics of adult orthodontic patients. Am J Orthod Dentofac Orthop. 2011;140:e263–72.

    Article  Google Scholar 

  2. Choo H, Heo HA, Yoon HJ, Chung KR, Kim SH. Treatment outcome analysis of speedy surgical orthodontics for adults with maxillary protrusion. Am J Orthod Dentofac Orthop. 2011;140:e251–62.

    Article  Google Scholar 

  3. Bollen AM. Effects of malocclusions and orthodontics on periodontal health: evidence from a systematic review. J Dent Educ. 2008;72:912–8.

    Google Scholar 

  4. Handelman CS, Greene CS. Progressive/idiopathic condylar resorption: an orthodontic perspective. Semin Orthod. 2013;19:55–70.

    Article  Google Scholar 

  5. Lobbezoo F, van der Zaag J, van Selms MK, Hamburger HL, Naeije M. Principles for the management of bruxism. J Oral Rehabil. 2008;35:509–23.

    Article  Google Scholar 

  6. Ho ML, Brass SD. Obstructive sleep apnea. Neurol Int. 2011;3:e15.

    Article  Google Scholar 

  7. Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofac Orthop. 2009;135:276–7.

    Article  Google Scholar 

  8. Vitral JC, Fraga MR, de Souza MA, Ferreira AP, Vitral RW. In-vitro study of cellular viability and nitric oxide production by J774 macrophages stimulated by interferon gamma with ceramic, polycarbonate, and polyoxymethylene brackets. Am J Orthod Dentofac Orthop. 2010;137:665–70.

    Article  Google Scholar 

  9. Karamouzos A, Athanasiou AE, Papadopoulos MA. Clinical characteristics and properties of ceramic brackets: a comprehensive review. Am J Orthod Dentofac Orthop. 1997;112:34–40.

    Article  Google Scholar 

  10. Brantly WA. Orthodontic wires. In: Brantley WA, Eliadas T, editors. Orthodontic materials: scientific and clinical aspects. Stuttgart: Thieme; 2001. p. 144–71.

    Google Scholar 

  11. Apetz R, van Bruggen MP. Transparent alumina: a light-scattering model. J Am Ceram Soc. 2003;86:480–6.

    Article  Google Scholar 

  12. Bishara SE. Ceramic brackets and the need to develop national standards. Am J Orthod Dentofac Orthop. 2000;117:595–7.

    Article  Google Scholar 

  13. Russell JS. Aesthetic orthodontic brackets. J Orthod. 2005;32:146–63.

    Article  Google Scholar 

  14. Suárez MFA, Torrecillas R, Menéndez JL. Sintering to transparency of polycrystalline ceramic materials, sintering of ceramics—new emerging techniques. In: Lakshmanan A, editor. InTech 2012.

  15. Ganesh I. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev. 2013;58:63–112.

    Article  Google Scholar 

  16. Villalobos GR, Sanghera JS, Aggarwal ID. Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J Am Ceram Soc. 2005;88:1321–2.

    Article  Google Scholar 

  17. Itatani K, Tsujimoto T, Kishimoto A. Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing. J Eur Ceram Soc. 2006;26:639–45.

    Article  Google Scholar 

  18. Wang CT, Lin LS, Yang SJ. Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors. J Am Ceram Soc. 1992;75:2240–3.

    Article  Google Scholar 

  19. Li JG, Ikegami T, Lee JH, Mori T. Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives. J Am Ceram Soc. 2000;83:961–3.

    Article  Google Scholar 

  20. Bodhak S, Balla VK, Bose S, Bandyopadhyay A, Kashalikar U, Jha SK, et al. In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (ALON(R)). J Mater Sci Mater Med. 2011;22:1511–9.

    Article  Google Scholar 

  21. Krell A, Klimke J, Hutzler T. Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc. 2009;29:275–81.

    Article  Google Scholar 

  22. Plumb JA. Cell sensitivity assays : the MTT assay. Methods Mol Med. 1999;28:25–30.

    Google Scholar 

  23. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Propidium iodide (PI) uptake assay to detect apoptosis. Cold Spring Harb Protoc. 2006;2006:pdb.prot4495.

  24. Kirsch-Volders M, Decordier I, Elhajouji A, Plas G, Aardema MJ, Fenech M. In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis. 2011;26:177–84.

    Article  Google Scholar 

  25. Sickafus KE, Wills JM, Grimes NW. Structure of spinel. J Am Ceram Soc. 1999;82:3279–92.

    Article  Google Scholar 

  26. Hallstedt B. Thermodynamic assessment of the system MgO–Al2O3. J Am Ceram Soc. 1992;75:1497–507.

    Article  Google Scholar 

  27. Swartz ML. Ceramic brackets. J Clin Orthod. 1988;22:82–8.

    Google Scholar 

  28. Scott GE Jr. Fracture toughness and surface cracks-the key to understanding ceramic brackets. Angle Orthod. 1988;58:5–8.

    Google Scholar 

  29. Goldstein A, Goldenberg A, Yeshurun Y, Hefetz M. Transparent MgAl2O4 spinel from a powder prepared by flame spray pyrolysis. J Am Ceram Soc. 2008;91:4141–4.

    Article  Google Scholar 

  30. Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett. 2002;56:587–92.

    Article  Google Scholar 

  31. Morita K, Kim BN, Hiraga K, Yoshida H. Fabrication of high-strength transparent MgAl2O4 spinel polycrystals by optimizing spark-plasma-sintering conditions. J Mater Res. 2009;24:2863–72.

    Article  Google Scholar 

  32. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    Article  Google Scholar 

  33. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent Mater. 1996;12:186–93.

    Article  Google Scholar 

  34. Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119:3–19.

    Article  Google Scholar 

  35. Cho MH, Niles A, Huang R, Inglese J, Austin CP, Riss T, et al. A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro. 2008;22:1099–106.

    Article  Google Scholar 

  36. Negroiu G, Piticescu RM, Chitanu GC, Mihailescu IN, Zdrentu L, Miroiu M. Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests). J Mater Sci Mater Med. 2008;19:1537–44.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. G. Sundararajan, (Director), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India and Dr. B. S. Dwarakanath, (Additional Director), Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, M., Tiwari, B., Seema, S. et al. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets. J Mater Sci: Mater Med 25, 2591–2599 (2014). https://doi.org/10.1007/s10856-014-5268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5268-3

Keywords

Navigation