Skip to main content

Advertisement

Log in

Molecular design and evaluation of biodegradable polymers using a statistical approach

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60 % within the first 24 h. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43. doi:10.1016/s0142-9612(00)00121-6.

    Article  CAS  Google Scholar 

  2. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24. doi:10.1163/156856201744489.

    Article  CAS  Google Scholar 

  3. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7. doi:10.1126/science.1067404.

    Article  CAS  Google Scholar 

  4. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98. doi:10.1016/j.progpolymsci.2007.05.017.

    Article  CAS  Google Scholar 

  5. Nair L, Laurencin C. Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Lee K, Kaplan D, editors. Tissue engineering I advances in biochemical engineering/biotechnology. Heidelberg: Springer; 2006. p. 47–90.

    Google Scholar 

  6. Hoogenboom R, Meier MAR, Schubert US. Combinatorial methods, automated synthesis and high-throughput screening in polymer research: past and present. Macromol Rapid Commun. 2003;24(1):15–32. doi:10.1002/marc.200390013.

    Article  CAS  Google Scholar 

  7. Kohn J, Welsh WJ, Knight D. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials. 2007;28(29):4171–7. doi:10.1016/j.biomaterials.2007.06.022.

    Article  CAS  Google Scholar 

  8. Smith JR, Seyda A, Weber N, Knight D, Abramson S, Kohn J. Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development. Macromol Rapid Commun. 2004;25(1):127–40. doi:10.1002/marc.200300193.

    Article  CAS  Google Scholar 

  9. Ghosh J, Lewitus DY, Chandra P, Joy A, Bushman J, Knight D. Computational modeling of in vitro biological responses on polymethacrylate surfaces. Polymer. 2011;52(12):2650–60. doi:10.1016/j.polymer.2011.04.014.

    Article  CAS  Google Scholar 

  10. Goldberg M, Mahon K, Anderson D. Combinatorial and rational approaches to polymer synthesis for medicine. Adv Drug Deliv Rev. 2008;60(9):971–8. doi:10.1016/j.addr.2008.02.005.

    Article  CAS  Google Scholar 

  11. Peters A, Brey DM, Burdick JA. High-throughput and combinatorial technologies for tissue engineering applications. Tissue Eng Part B. 2009;15(3):225–39. doi:10.1089/ten.TEB.2009.0049.

    Article  CAS  Google Scholar 

  12. Chen Y, Zhou S, Li Q. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 2011;7(3):1140–9. doi:10.1016/j.actbio.2010.09.038.

    Article  CAS  Google Scholar 

  13. Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103–14. doi:10.1016/0142-9612(96)85755-3.

    Article  Google Scholar 

  14. Antheunis H, van der Meer J-C, de Geus M, Kingma W, Koning CE. Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules. 2009;42(7):2462–71. doi:10.1021/ma802222m.

    Article  CAS  Google Scholar 

  15. Cawse JN. Experimental strategies for combinatorial and high-throughput materials development. Acc Chem Res. 2001;34(3):213–21. doi:10.1021/ar000117s.

    Article  CAS  Google Scholar 

  16. Gruter G-JM, Graham A, McKay B, Gilardoni F. R&D intensification in polymer catalyst and product development by using high-throughput experimentation and simulation. Macromol Rapid Commun. 2003;24(1):73–80. doi:10.1002/marc.200390015.

    Article  CAS  Google Scholar 

  17. Breyfogle FW. Implementing six sigma: smarter solutions using statistical methods. 2nd ed. Hoboken: Wiley; 2003.

    Google Scholar 

  18. Neuman RC. Experimental strategies for polymer scientists and plastics engineers. SPE books. Munich; Hanser; Hanser/Gardner Publications distributor; 1997.

  19. Walpole RE. Probability & statistics for engineers & scientists. 8th ed. Upper Saddle River: Pearson Prentice Hall; 2007.

    Google Scholar 

  20. Schut J, Bolikal D, Khan IJ, Pesnell A, Rege A, Rojas R, et al. Glass transition temperature prediction of polymers through the mass-per-flexible-bond principle. Polymer. 2007;48(20):6115–24. doi:10.1016/j.polymer.2007.07.048.

    Article  CAS  Google Scholar 

  21. Abramson SD. Selected bulk and surface properties and biocompatibility of a new class of tyrosine-derived polycarbonates.Dissertation, New Brunswick: Rutgers Univeristy and University of Medicine and Dentistry of New Jersey and Robert Wood Johnson Medical School; 2002.

  22. Bourke SL, Kohn J. Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev. 2003;55(4):447–66. doi:10.1016/s0169-409x(03)00038-3.

    Article  CAS  Google Scholar 

  23. Magno MHR, Kim J, Srinivasan A, McBride S, Bolikal D, Darr A, et al. Synthesis, degradation and biocompatibility of tyrosine-derived polycarbonate scaffolds. J Mater Chem. 2010;20(40):8885–93.

    Article  CAS  Google Scholar 

  24. Rojas R, Harris NK, Piotrowska K, Kohn J. Evaluation of automated synthesis for chain and step-growth polymerizations: can robots replace the chemists? J Polym Sci Part A. 2009;47(1):49–58. doi:10.1002/pola.23119.

    Article  CAS  Google Scholar 

  25. Sung H-J, Luk A, Murthy NS, Liu E, Jois M, Joy A, et al. Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter. 2010;6(20):5196–205.

    Article  CAS  Google Scholar 

  26. James K, Levene H, Russell Parsons J, Kohn J. Small changes in polymer chemistry have a large effect on the bone–implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials. 1999;20(23–24):2203–12. doi:10.1016/s0142-9612(99)00151-9.

    Article  CAS  Google Scholar 

  27. Yu C, Kohn J. Tyrosine–PEG-derived poly(ether carbonate)s as new biomaterials: part I: synthesis and evaluation. Biomaterials. 1999;20(3):253–64. doi:10.1016/s0142-9612(98)00169-0.

    Article  CAS  Google Scholar 

  28. Kim J, Magno MH, Waters H, Doll BA, McBride S, Alvarez P, et al. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2012;18(11–12):1132–9. doi:10.1089/ten.TEA.2011.0582.

    Article  CAS  Google Scholar 

  29. Lewitus DY, Smith KL, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32(24):5543–50. doi:10.1016/j.biomaterials.2011.04.052.

    Article  CAS  Google Scholar 

  30. Strandberg E, Zeltinger J, Schulz DG, Kaluza GL. Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circulation. 2012. doi:10.1161/circinterventions.111.964270.

  31. Khan I, Murthy N, Kohn J. Hydration-induced phase separation in amphiphilic polymer matrices and its influence on voclosporin release. J Funct Biomaterials. 2012;3(4):745–59.

    Article  CAS  Google Scholar 

  32. Tangpasuthadol V, Pendharkar SM, Peterson RC, Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials. 2000;21(23):2379–87. doi:10.1016/S0142-9612(00)00105-8.

    Article  CAS  Google Scholar 

  33. Deschamps AA, van Apeldoorn AA, Hayen H, de Bruijn JD, Karst U, Grijpma DW. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials. 2004;25(2):247–58. doi:10.1016/S0142-9612(03)00495-2.

    Article  CAS  Google Scholar 

  34. Shen-Guo W, Bo Q. Polycaprolactone–poly(ethylene glycol) block copolymer, I: synthesis and degradability in vitro. Polym Adv Technol. 1993;4(6):363–6. doi:10.1002/pat.1993.220040601.

    Article  Google Scholar 

  35. Weber N, Pesnell A, Bolikal D, Zeltinger J, Kohn J. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices. Langmuir. 2007;23(6):3298–304. doi:10.1021/la060500r.

    Article  CAS  Google Scholar 

  36. Johnson PA, Luk A, Demtchouk A, Patel H, Sung H-J, Treiser MD, et al. Interplay of anionic charge, poly(ethylene glycol), and iodinated tyrosine incorporation within tyrosine-derived polycarbonates: effects on vascular smooth muscle cell adhesion, proliferation, and motility. J Biomed Mater Res Part A. 2010;93A(2):505–14. doi:10.1002/jbm.a.32544.

    CAS  Google Scholar 

Download references

Acknowledgments

The project described was supported by Award Number P41EB001046 from the National Institute of Biomedical Imaging And Bioengineering. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Biomedical Imaging and Bioengineering or the National Institutes of Health. Additional support was provided by the Israeli Chief Scientist’s Brain Gain Program and by the New Jersey Center for Biomaterials at Rutgers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Y. Lewitus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewitus, D.Y., Rios, F., Rojas, R. et al. Molecular design and evaluation of biodegradable polymers using a statistical approach. J Mater Sci: Mater Med 24, 2529–2535 (2013). https://doi.org/10.1007/s10856-013-5008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5008-0

Keywords

Navigation