Skip to main content

Advertisement

Log in

Long-term biocompatibility evaluation of 0.5 % zinc containing hydroxyapatite in rabbits

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study investigates the long-term biocompatibility of 0.5 % zinc-containing hydroxyapatite compared with hydroxyapatite. Spheres (425 < ∅ < 550) of both materials were produced by extrusion of ceramic slurry in calcium chloride and characterized by FTIR, XRD, XRF and SEM. Fifteen White New Zealand rabbits were submitted to general anesthesia, and an perforation (2 mm), was made in each tibia, one for zinc-containing hydroxyapatite sphere implantation and one for hydroxyapatite sphere implantation. After 26, 52 and 78 weeks, the animals were euthanized, and the fragment containing the biomaterial was harvested. A 30–50 μm section was obtained for histological analysis in bright field and polarized light. SEM images revealed similar morphologies between the tested biomaterials. Histological analysis showed that there was no difference between the test groups. The morphometric analysis, however, indicates that there was a greater absorption. The materials are biocompatible, promote osteogenesis and that the zinc-containing hydroxyapatite microspheres were absorbed more quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007;7:475–90.

    Article  Google Scholar 

  2. Torrent-Burgues J, Rodriguez-Clemente R. Hydroxyapatite precipitation in a semibatch process. Cryst Res Technol. 2001;36:1075–82.

    Article  CAS  Google Scholar 

  3. Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxyapatite with substituted magnesium, zinc, cadmium, and yttrium II: mechanisms of osteoblast adhesion. J Biomed Mater Res A. 2002;59:312–7.

    Article  CAS  Google Scholar 

  4. Webster TJ, Massa-Schluter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25:2111–21.

    Article  CAS  Google Scholar 

  5. Matsunaga K, Murata H, Mizoguchi T, Nakahira A. Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater. 2009;6:2289–93.

    Article  Google Scholar 

  6. Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, Hager A, Weill R, Boccio J. Zinc status and immune system relationship: a review. Biol Trace Elem Res. 2000;76:193–205.

    Article  CAS  Google Scholar 

  7. Ito A, Ojima K, Naito H, Ichinose N, Tateisci T. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res. 2000;50:178–83.

    Article  CAS  Google Scholar 

  8. Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng, C. 2002;22:21–5.

    Article  Google Scholar 

  9. Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N. Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Curr Appl Phys. 2005;5:402–6.

    Article  Google Scholar 

  10. Moonga BS, Dempster DW. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995;10:453–7.

    Article  CAS  Google Scholar 

  11. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci-Mater M. 2008;19:239–47.

    Article  CAS  Google Scholar 

  12. Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: An in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials. 2005;26:5492–9.

    Article  CAS  Google Scholar 

  13. Fernandes GVO, Calasans-Maia MD, Mitri FF, Bernardo VG, Rossi A, Almeida GDS, Granjeiro JM. Histomorphometric Analysis of Bone Repair in Critical Size Defect in Rats Calvaria Treated with Hydroxyapatite and Zinc-Containing Hydroxyapatite 5%. Key Eng Mater. 2009;396–398:15–8.

    Article  Google Scholar 

  14. Conz MB, Granjeiro JM, Soares Gde A. Hydroxyapatite crystallinity does not affect the repair of critical size bone defects. J Appl Oral Sci. 2011;19:337–42.

    Article  CAS  Google Scholar 

  15. Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implants Res. 2009;20:340–50.

    Article  Google Scholar 

  16. Accorsi-Mendonça T, Conz MB, Barros TC, de Sena LA. Soares Gde A, Granjeiro JM. Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res. 2008;22:5–10.

    Article  Google Scholar 

  17. Barrere F, Van Blitterswijk CA, Groot KD. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed. 2006;1:317–32.

    CAS  Google Scholar 

  18. de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, de Sena LÁ, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98:351–8.

    Google Scholar 

  19. de Souza CA, Colombo AP, Souto RM, Silva-Boghossian CM, Granjeiro JM, Alves GG, Rossi AM, Rocha-Leão MH. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity. Colloids Surf B Biointerfaces. 2011;87:310–8.

    Article  Google Scholar 

  20. Bazin D, Carpentier X, Traxer O, Thiaudiere D, Somogvi A, Reguer S. Very first tests on soleil regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat. 2008;15:506–9.

    Article  CAS  Google Scholar 

  21. Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30:2864–72.

    Article  CAS  Google Scholar 

  22. Costa AM, Soares GA, Calixto R, Rossi AM. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:119–22.

    Article  Google Scholar 

  23. Kawamura H, Ito A, Muramatsu T, Miyakawa S, Ochiai N, Tateishi T. Long term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J Biomed Mater Res A. 2003;65:468–74.

    Article  CAS  Google Scholar 

  24. Calasans-Maia MD, Rossi AM, Dias EP, Santos SRA, Ascoli FO, Granjeiro JM. Stimulatory effect on osseous repair of zinc-substituted hydroxyapatite: Histological study in rabbit’s tibia. Key Eng Mater. 2008;361–363:1269–72.

    Article  Google Scholar 

  25. Kawachi EY, Bertran CA, Reis R, Alves OL. Biocerâmicas: tendências e perspectivas de uma área interdisciplinar. Quim Nova. 2000;23:518–22.

    Article  Google Scholar 

  26. Riminucci M, Bianco P. Building bone tissue: matrices and scaffolds in physiology and biotechnology. Braz J Med Biol Res. 2003;36:1027–36.

    Article  CAS  Google Scholar 

  27. Li X, Sogo Y, Ito A, Mutsuzaki H, Ochial N, Kobayashi T, Nakamura S, Yamashita K, Legeros RZ. The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater Sci Eng, C. 2009;29:969–75.

    Article  CAS  Google Scholar 

  28. Pradeesh TS, Sunny MC, Varma HK, Ramesh P. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions. B Mater Sci. 2005;28:383–90.

    Article  CAS  Google Scholar 

  29. Ribeiro CC, Barrias CC, Barbosa MA. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials. 2004;25:4363–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FAPERJ, FINEP, DECIT-MS and CNPq. In addition to the research partners LNLS, COPPE, INMETRO and CBPF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo F. B. Resende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resende, R.F.B., Fernandes, G.V.O., Santos, S.R.A. et al. Long-term biocompatibility evaluation of 0.5 % zinc containing hydroxyapatite in rabbits. J Mater Sci: Mater Med 24, 1455–1463 (2013). https://doi.org/10.1007/s10856-013-4865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4865-x

Keywords

Navigation