Skip to main content

Advertisement

Log in

Fabrication and characterization of porous Ti–7.5Mo alloy scaffolds for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous titanium and titanium alloys are promising scaffolds for bone tissue engineering, since they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, porous Ti–7.5Mo alloy scaffolds with various porosities from 30 to 75 % were successfully prepared through a space-holder sintering method. The yield strength and elastic modulus of a Ti–7.5Mo scaffold with a porosity of 50 % are 127 MPa and 4.2 GPa, respectively, being relatively comparable to the reported mechanical properties of natural bone. In addition, the porous Ti–7.5Mo alloy exhibited improved apatite-forming abilities after pretreatment (with NaOH or NaOH + water) and subsequent immersion in simulated body fluid (SBF) at 37 °C. After soaking in an SBF solution for 21 days, a dense apatite layer covered the inner and outer surfaces of the pretreated porous Ti–7.5Mo substrates, thereby providing favorable bioactive conditions for bone bonding and growth. The preliminary cell culturing result revealed that the porous Ti–7.5Mo alloy supported cell attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117.

    Article  CAS  Google Scholar 

  2. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomechanics. 1985;18:317–28.

    Article  CAS  Google Scholar 

  3. Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  4. Li BY, Rong LJ, Li YY, Gjunter VE. Synthesis of porous Ni–Ti shape memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure. Acta Mater. 2000;48:3895–904.

    Article  CAS  Google Scholar 

  5. Chu CL, Chung CY, Zhou J, Pu YP, Lin PH. Fabrication and characteristics of bioactive sodium titanate/titania graded film on NiTi shape memory alloy. J Biomed Mater Res A. 2005;75:595–602.

    CAS  Google Scholar 

  6. Wang XJ, Li YC, Hodgson PD, Wen CE. Nano- and macro-scale characterisation of the mechanical properties of bovine bone. Mater Forum. 2007;31:156–9.

    CAS  Google Scholar 

  7. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25:443–50.

    Article  CAS  Google Scholar 

  8. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scripta Mater. 2001;45:1147–53.

    Article  CAS  Google Scholar 

  9. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med. 2002;13:397–401.

    Article  CAS  Google Scholar 

  10. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett. 2004;58:357–60.

    Article  CAS  Google Scholar 

  11. Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46:559–632.

    Article  CAS  Google Scholar 

  12. Dunand DC. Processing of titanium foams. Adv Eng Mater. 2004;6:369–76.

    Article  CAS  Google Scholar 

  13. Bram M, Stiller C, Buchkremer HP, Stöver D, Baur H. High-porosity titanium, stainless steel, and superalloy parts. Adv Eng Mater. 2000;2:196–9.

    Article  CAS  Google Scholar 

  14. Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI. A bioactive titanium foam scaffold for bone repair. Acta Biomater. 2005;1:523–33.

    Article  Google Scholar 

  15. Alvarez K, Sato K, Hyun SK, Nakajima H. Fabrication and properties of lotus-type porous nickel-free stainless steel for biomedical applications. Mater Sci Eng C. 2008;28:44–50.

    Article  CAS  Google Scholar 

  16. Alvarez K, Hyuna SK, Nakano T, Umakoshi Y, Nakajima H. In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats. Mater Sci Eng C. 2009;29:1182–90.

    Article  CAS  Google Scholar 

  17. Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161–71.

    Article  CAS  Google Scholar 

  18. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Novel titanium foam for bone tissue engineering. J Mater Res. 2002;17:2633–9.

    Article  CAS  Google Scholar 

  19. Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Mater. 2003;49:1197–202.

    Article  CAS  Google Scholar 

  20. Li JP, De Wijn JR, Van Blitterswijk CA, De Groot K. Porous Ti–6Al-4 V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials. 2006;27:1223–35.

    Article  CAS  Google Scholar 

  21. Li JP, Li SH, Van Blitterswijk CA, De Groot K. A novel porous Ti–6Al-4 V: characterization and cell attachment. J Biomed Mater Res A. 2005;73:223–33.

    CAS  Google Scholar 

  22. Hollander DA, Von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli HJ. Structural, mechanical and in vitro characterization of individually structured Ti–6Al-4 V produced by direct laser forming. Biomaterials. 2006;27:955–63.

    Article  CAS  Google Scholar 

  23. Laptev A, Vyal O, Bram M, Buchkremer HP, Stöver D. Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metall. 2005;48:358–64.

    Article  CAS  Google Scholar 

  24. Kotan G, Bor Ş. Production and characterization of high porosity Ti6Al-4 V foam by space holder technique in powder metallurgy. Turkish J Eng Environ Sci. 2007;31:149–56.

    CAS  Google Scholar 

  25. Esen Z, Bor Ş. Processing of titanium foams using magnesium spacer particles. Scripta Mater. 2007;56:341–4.

    Article  CAS  Google Scholar 

  26. Li Y, Xiong J, Wong CS, Hodgson PD, Wen C. Ti–6Ta–4Sn alloy and subsequent scaffolding for bone tissue engineering. Tissue Eng A. 2009;15:3151–9.

    Article  CAS  Google Scholar 

  27. Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti–6Al-4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536–44.

    Article  CAS  Google Scholar 

  28. Okazaki Y, Rao S, Tateishi T, Ito Y. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A. 1998;243:250–6.

    Article  Google Scholar 

  29. Ho WF, Ju CP, Chern Lin JH. Structure and properties of cast binary Ti–Mo alloys. Biomaterials. 1999;20:2115–22.

    Article  CAS  Google Scholar 

  30. Ho WF. Effect of omega phase on mechanical properties of Ti–Mo alloys for biomedical application. J Med Biol Eng. 2008;28:47–51.

    Google Scholar 

  31. Ho WF. A comparison of tensile properties and corrosion behavior of cast Ti7.5Mo with c.p. Ti, Ti15Mo and Ti6Al-4 V alloys. J Alloys Compd. 2008;464:580–3.

    Article  CAS  Google Scholar 

  32. Lin DJ, Chuang CC, Chern Lin JH, Lee JW, Ju CP, Yin HS. Bone formation at the surface of low modulus Ti7.5Mo implants in rabbit femur. Biomaterials. 2007;28:2582–9.

    Article  CAS  Google Scholar 

  33. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim HM, Kokubo T. Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res. 2001;56:562–70.

    Article  CAS  Google Scholar 

  34. Wei M, Kim HM, Kokubo T, Evans JH. Optimising the bioactivity of alkaline-treated titanium alloy. Mater Sci Eng C. 2002;20:125–34.

    Article  Google Scholar 

  35. Liang F, Zhou L, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surf Coat Technol. 2003;165:133–9.

    Article  CAS  Google Scholar 

  36. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, Nakamura T. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials. 2006;27:2682–91.

    Article  CAS  Google Scholar 

  37. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci Mater Med. 2004;15:99–107.

    Article  CAS  Google Scholar 

  38. Ho WF, Lai CH, Hsu HC, Wu SC. Surface modification of a low-modulus Ti7.5Mo alloy treated with aqueous NaOH. Surf Coat Technol. 2009;203:3142–50.

    Article  CAS  Google Scholar 

  39. Ho WF, Lai CH, Hsu HC, Wu SC. Surface modification of a Ti7.5Mo alloy using NaOH treatment and Bioglass® coating. J Mater Sci Mater Med. 2010;21:1479–88.

    Article  CAS  Google Scholar 

  40. Hsu HC, Wu SC, Fu CL, Ho WF. Formation of calcium phosphates on low-modulus Ti7.5Mo alloy by acid and alkali treatments. J Mater Sci. 2010;45:3661–70.

    Article  CAS  Google Scholar 

  41. Hsu HC, Tsou HK, Hsu SK, Wu SC, Lai CH, Ho WF. Effect of water aging on the apatite formation of a low-modulus Ti7.5Mo alloy treated with aqueous NaOH. J Mater Sci. 2011;46:1369–79.

    Article  CAS  Google Scholar 

  42. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  43. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng, A. 1996;213:134–7.

    Article  Google Scholar 

  44. Kawai N, Niwa S, Sato M, Sato Y, Suwa Y, Ichihara I. Bone formation by cells from femurs cultured among three-dimensionally arranged hydroxyapatite granules. J Biomed Mater Res. 1997;37:1–8.

    Article  CAS  Google Scholar 

  45. Evans FG. The mechanical properties of bone. Artif Limbs. 1969;13:37–48.

    CAS  Google Scholar 

  46. Chu CL, Chung CY, Lin PH, Wang SD. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater Sci Eng A. 2004;366:114–9.

    Article  Google Scholar 

  47. Pilliar RM. Modern metal processing for improved load-bearing surgical implants. Biomaterials. 1991;12:95–100.

    Article  CAS  Google Scholar 

  48. Pattanayak DK, Pattanayak DK, Pattanayak DK, Matsushita T, Doi K, Doi K, Takadama H, Nakamura T, Nakamura T, Kokubo T. Effects of oxygen content of porous titanium metal on its apatite-forming ability and compressive strength. Mater Sci Eng C. 2009;29:1974–8.

    Article  CAS  Google Scholar 

  49. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg A. 1976;58:82–6.

    CAS  Google Scholar 

  50. Oh IH, Nomura N, Masahashi N, Hanada S. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Mater Trans. 2002;43:443–6.

    Article  CAS  Google Scholar 

  51. Torres Y, Pavon JJ, Rodriguez JA. Processing and characterization of porous titanium for implants by using NaCl as space holder. J Mater Process Technol. 2012;212:1061–9.

    Article  CAS  Google Scholar 

  52. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.

    Article  CAS  Google Scholar 

  53. Chen XB, Li YC, Hodgson PD, Wen C. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomater. 2009;5:2290–302.

    Article  CAS  Google Scholar 

  54. Nishiguchi S, Kato H, Fujita H, Kim HM, Miyaji F, Kokubo T, Nakamura T. Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments. J Biomed Mater Res. 1999;48:689–96.

    Article  CAS  Google Scholar 

  55. Kokubo T. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta. 1996;280–281:479–90.

    Article  Google Scholar 

  56. Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bone-like apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res. 2001;57:441–8.

    Article  CAS  Google Scholar 

  57. Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res A. 2003;67:1305–9.

    Article  Google Scholar 

  58. Kosmulski M. The role of the activity coefficients of surface groups in the formation of surface charge of oxides. Part II: ion exchange and ζ potentials. Colloid Polym Sci. 1993;271:1076–82.

    Article  CAS  Google Scholar 

  59. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  60. Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng, R. 2004;47:49–121.

    Article  Google Scholar 

  61. Duan YR, Zhang ZR, Wang CY, Chen JY, Zhang XD. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci Mater Med. 2005;16:795–801.

    Article  CAS  Google Scholar 

  62. Wang XX, Hayakawa S, Tsuru K, Osaka A. A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res. 2001;54:172–8.

    Article  CAS  Google Scholar 

  63. Wang XX, Yan W, Hayakawa S, Tsuru K, Osaka A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 2003;24:4631–7.

    Article  CAS  Google Scholar 

  64. Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Osaka A, Ohtsuki C. Surface topography designed to provide osteoconductivity to titanium after thermal oxidation. Mater Trans. 2008;49:428–34.

    Article  CAS  Google Scholar 

  65. Ravelingien M, Hervent A-S, Mullens S, Luyten J, Vervaet C, Remon JP. Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Appl Surf Sci. 2010;256:3693–7.

    Article  CAS  Google Scholar 

  66. Chodniewicz D, Klemke RL. Guiding cell migration through directed extension and stabilization of pseudopodia. Exp Cell Res. 2004;301:31–7.

    Article  CAS  Google Scholar 

  67. Hsu HC, Wu SC, Yang CH, Ho WF. ZrO2/hydroxyapatite coating on titanium by electrolytic deposition. J Mater Sci Mater Med. 2009;20:615–9.

    Article  CAS  Google Scholar 

  68. Wang X, Li Y, Xiong J, Hodgson PD, Wen C. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater. 2009;5:3616–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express appreciation to Dr. Cheryl Rutledge, Associate Professor of English, Da-Yeh University, for her editorial assistance. The authors acknowledge the partial financial support of Taichung Veterans General Hospital and Da-Yeh University (TCVGH-DYU1008302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HC., Hsu, SK., Tsou, HK. et al. Fabrication and characterization of porous Ti–7.5Mo alloy scaffolds for biomedical applications. J Mater Sci: Mater Med 24, 645–657 (2013). https://doi.org/10.1007/s10856-012-4843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4843-8

Keywords

Navigation