Skip to main content
Log in

Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2–5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7–14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rahaman MN, DE Day, Sonny BB, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  CAS  Google Scholar 

  2. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967–78.

    Article  CAS  Google Scholar 

  3. Day DE, White JE, Brown RF, McMenamin KD. Transformation of borate glasses into biologically useful materials. Glass Technol. 2003;44:75–81.

    CAS  Google Scholar 

  4. Han X, Day DE. Reaction of sodium calcium borate glasses to form hydroxyapatite. J Mater Sci Mater Med. 2007;18:1837–47.

    Article  CAS  Google Scholar 

  5. Day DE, Erbe EM, Richard M, Wojcik JA. Bioactive mater US Patent. 2004;6709:744.

    Google Scholar 

  6. Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25:491–9.

    Article  CAS  Google Scholar 

  7. Huang W, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med. 2006;17:583–96.

    Article  CAS  Google Scholar 

  8. Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc. 2007;90:303–6.

    Article  CAS  Google Scholar 

  9. Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A. 2010;95:164–71.

    Google Scholar 

  10. Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res. 1998;41:527–33.

    Article  CAS  Google Scholar 

  11. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res. 2001;55:151–7.

    Article  CAS  Google Scholar 

  12. Irion G. Comprehensive wound management. 2nd ed. Thorofare: SLACK Incoporated; 2010.

    Google Scholar 

  13. Lansdown ABG. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen. 2002;10:271–85.

    Article  Google Scholar 

  14. Barnett SE, Varley SJ. The effects of calcium alginate on wound healing. Ann Roy Coll Surg. 1987;69:153–5.

    CAS  Google Scholar 

  15. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Pt B Rev. 2010;16:199–207.

    Article  CAS  Google Scholar 

  16. Jung SB. Borate based bioactive glass scaffolds for hard and soft tissue engineering. PhD thesis, Missouri University of Science and Technology; 2010.

  17. Quintero F, Pou J, Comesaña R, Lusquiños F, Riveiro A, Mann AB, et al. Laser spinning of bioactive glass nanofibers. Adv Funct Mater. 2009;19:3084–90.

    Article  CAS  Google Scholar 

  18. Kim HW, Kim HE, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16:1529–35.

    Article  Google Scholar 

  19. Xia W, Zhang D, Chang J. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology. 2007;18:135601.

    Article  Google Scholar 

  20. Gao C, Gao Q, Bao X, Li Y, Teramoto A, Abe K. Preparation and in vitro bioactivity of novel mesoporous borosilicate bioactive glass nanofibers. J Am Ceram Soc. 2011;94:2841–5.

    Article  CAS  Google Scholar 

  21. Jo J-H, Lee E-J, Shin D-S, Kim H-E, Kim H-W, Koh Y-H, et al. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials. J Biomed Mater Res B. 2009;91B:213–20.

    Article  CAS  Google Scholar 

  22. Wray P. ‘Cotton candy’ that heals? Borate glass nanofibers look promising. Am Ceram Soc Bull. 2011;90:25–9.

    CAS  Google Scholar 

  23. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A–W. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  24. Verhoef AH, den Hartog HW. Structure and dynamics of alkali borate glasses: a molecular dynamics study. J Non-Cryst Solids. 1995;182:235–47.

    Article  Google Scholar 

  25. Kamitsos EI, Karakassides MA, Chryssikos GD. Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. J Phys Chem. 1987;91:1073–9.

    Article  CAS  Google Scholar 

  26. Kim CY, Clark AE, Hench LL. Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids. 1989;113:195–202.

    Article  CAS  Google Scholar 

  27. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8:1–4.

    Article  CAS  Google Scholar 

  28. Filgueiras MR, La Torre G, Hench LL. Solution effects on the surface reactions of a bioactive glass. J Biomed Mater Res. 1993;27:445–53.

    Article  CAS  Google Scholar 

  29. Termine JD, Posner AS. Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature. 1966;211:268–70.

    Article  CAS  Google Scholar 

  30. Reiche I, Vignaud C, Menu M. The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry. 2002;44:447–59.

    Article  CAS  Google Scholar 

  31. Mahamid J, Sharir A, Addadi L, Weiner S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA. 2008;105:12748–53.

    Article  CAS  Google Scholar 

  32. Varshneya AK. Fundamentals of inorganic glasses. San Diego: Academic Press; 1994.

    Google Scholar 

  33. Pereira MM, Clark AE, Hench LL. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc. 1995;78:2463–8.

    Article  CAS  Google Scholar 

  34. Hayakawa S, Tsuru K, Ohtsuki C, Osaka A. Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid. J Am Ceram Soc. 1999;82:2155–60.

    Article  CAS  Google Scholar 

  35. Eanes ED, Termine JD, Nylen MU. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calc Tissue Res. 1973;12:143–58.

    Article  CAS  Google Scholar 

  36. Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature. 1965;208:365–7.

    Article  CAS  Google Scholar 

  37. Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6:4457–75.

    Article  CAS  Google Scholar 

  38. Bilezikian JP, Raisz LG, Rodan GA. Principles of bone biology. San Diego: Academic Press; 2002.

    Google Scholar 

  39. Heinonen JK. Biological role of inorganic pyrophosphate. London: Kluwer Academic; 2001.

    Book  Google Scholar 

  40. Bunker BC. Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids. 1994;179:300–8.

    Article  CAS  Google Scholar 

  41. Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, et al. Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors. J Mater Sci Mater Med. 2009;20:1237–43.

    Article  CAS  Google Scholar 

  42. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  CAS  Google Scholar 

  43. Nelson DG. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res. 1981;60:1621–9.

    Article  CAS  Google Scholar 

  44. LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1–201.

    CAS  Google Scholar 

  45. Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials. 2002;23:751–5.

    Article  CAS  Google Scholar 

  46. Alexander GB, Heston WM, Iler RK. The solubility of amorphous silica in water. J Phys Chem. 1954;58:453–5.

    Article  CAS  Google Scholar 

  47. Clark DE, Pantano CG Jr, Hench LL. Corrosion of glass. New York: Books for industry and the glass industry; 1979.

    Google Scholar 

Download references

Acknowledgments

The authors thank Mo-Sci Corp. Rolla, Missouri, USA, for providing the microfibrous glass used in this work, Yetunde Oladapo for assistance with FTIR and XRD sample preparation, and Dr. Kai Song for assistance with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. Rahaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Rahaman, M.N. & Day, D.E. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J Mater Sci: Mater Med 24, 583–595 (2013). https://doi.org/10.1007/s10856-012-4831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4831-z

Keywords

Navigation