Skip to main content
Log in

The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass–ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glasses and glass–ceramics of the SiO2–CaO–P2O5 system were synthesised by means of a sol–gel method using different phosphorus precursors according to their respective rates of hydrolysis—triethylphosphate (OP(OC2H5)3), phosphoric acid (H3PO4) and a solution prepared by dissolving phosphorus oxide (P2O5) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700–1,200 °C that were used to convert the gels into glasses and glass–ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO3) and tricalcium phosphate (α-Ca3(PO4)2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hench LL. The story of bioglass. J Mater Sci: Mater Med. 2006;17:967–78.

    Article  CAS  Google Scholar 

  2. Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29:1257–65.

    Article  CAS  Google Scholar 

  3. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2:231–9.

    Article  CAS  Google Scholar 

  4. Li R, Clark AE, Hench LL. Alkali-free bioactive sol–gel compositions. Patent International Publication Number WO1991/017965 (1991).

  5. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  CAS  Google Scholar 

  6. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  CAS  Google Scholar 

  7. Vallet-Regí M, Rangel VR, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;2003:1029–42.

    Article  Google Scholar 

  8. Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res. 2001;58:734–40.

    Article  CAS  Google Scholar 

  9. Lenza RFS, Vasconcelos WL, Jones JR, Hench LL. Surface-modified 3D scaffolds for tissue engineering. J Mater Sci: Mater Med. 2002;13:837–42.

    Article  CAS  Google Scholar 

  10. Lenza RFS, Jones JR, Vasconcelos WL, Hench LL. In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res. 2003;67:121–9.

    Article  CAS  Google Scholar 

  11. Andrade AL, Manzi D, Domingues R. Tetracycline and propolis incorporation and release by bioactive glassy compounds. J Non-Cryst Solids. 2006;352:3502–7.

    Article  CAS  Google Scholar 

  12. Andrade AL, Souza DM, Vasconcellos WA, Ferreira RV, Domingues RZ. Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds. J Non-Cryst Solids. 2009;355:811–6.

    Article  CAS  Google Scholar 

  13. Jones JR, Gentleman E, Polak J. Bioactive glass scaffolds for bone regeneration. Elements. 2007;3:393–9.

    Article  CAS  Google Scholar 

  14. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31:1245–56.

    Article  CAS  Google Scholar 

  15. Łączka M, Cholewa K, Mozgawa W. Glass-crystalline materials of the CaO–P2O5–SiO2 system obtained by the sol–gel method. J Mater Sci Lett. 1995;14:1417–20.

    Article  Google Scholar 

  16. Łączka M, Cholewa K, Łączka-Osyczka A. Gel-derived powders of CaO–P2O5–SiO2 system as a starting material to production of bioactive ceramics. J Alloys Compd. 1997;248:42–51.

    Article  Google Scholar 

  17. Łączka M, Cholewa-Kowalska K, Kulgawczyk K, Klisch M, Mozgawa W. Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J Mol Struct. 1999;511–512:223–31.

    Google Scholar 

  18. Román J, Padilla S, Vallet-Regí M. Sol–gel glasses as precursors of bioactive glass ceramics. Chem Mater. 2003;15:798–806.

    Article  Google Scholar 

  19. Padilla S, Román J, Carenas A, Vallet-Regí M. The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials. 2005;26:475–83.

    Article  CAS  Google Scholar 

  20. Vallet-Regí M, Román J, Padilla S, Doadrio JC, Gil FJ. Bioactivity and mechanical properties of SiO2–CaO–P2O5 glass-ceramics. J Mater Chem. 2005;15:1353–9.

    Article  Google Scholar 

  21. Izquierdo-Barba I, Salinas AJ, Vallet-Regí M. In vitro calcium phosphate layer formation on sol–gel glasses of the CaO–SiO2 system. J Biomed Mater Res. 1999;47:243–50.

    Article  CAS  Google Scholar 

  22. Vallet-Regí M, Izquierdo-Barba I, Salinas AJ. Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res. 1999;46:560–5.

    Article  Google Scholar 

  23. Saravanapavan P, Hench LL. Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO–SiO2 system. J Biomed Mater Res. 2000;54:608–18.

    Article  Google Scholar 

  24. Łączka M, Cholewa-Kowalska K, Łączka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of a CaO–P2O5–SiO2, system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res. 2000;52:601–12.

    Article  Google Scholar 

  25. Oki A, Parveen B, Hossain S, Adeniji S, Donahue H. Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J Biomed Mater Res. 2003;69:216–21.

    Google Scholar 

  26. Roberto WS, Pereira MM, Campos TPR. Analysis of bioactive glasses obtained by sol–gel processing for radioactive implants. Mater Res. 2003;6:123–7.

    CAS  Google Scholar 

  27. Carta D, Pickup DM, Knowles JC, Smithc ME, Newporta RJ. Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. J Mater Chem. 2005;15:2134–40.

    Article  CAS  Google Scholar 

  28. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.

    Article  CAS  Google Scholar 

  29. Balamurugan A, Balossier G, Michel J, Kannan S, Benhayoune H, Rebelo AHS, Ferreira JMF. Sol–gel derived SiO2–CaO–MgO–P2O5 bioglass system-preparation and in vitro characterization. J Biomed Mater Res. 2007;83:546–53.

    Article  CAS  Google Scholar 

  30. Lao J, Jallot E, Nedelec J-M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater. 2008;20:4969–73.

    Article  CAS  Google Scholar 

  31. Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JMF. An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater. 2008;24:1343–51.

    Article  CAS  Google Scholar 

  32. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol–gel derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 2009;29:335–40.

    Article  CAS  Google Scholar 

  33. Chen Q-Z, Li Y, Jin L-Y, Quinn JMW, Komesaroff PA. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–53.

    Article  CAS  Google Scholar 

  34. Siqueira RL, Peitl O, Zanotto ED. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C. 2011;31:983–91.

    Article  CAS  Google Scholar 

  35. Lucas-Girot A, Mezahi FZ, Mami M, Oudadesse H, Harabi A, Le Floch M. Sol–gel synthesis of a new composition of bioactive glass in the quaternary system SiO2–CaO–Na2O–P2O5: comparison with melting method. J Non-Cryst Solids. 2011;357:3322–7.

    Article  CAS  Google Scholar 

  36. Pereira MM, Clark AE, Hench LL. Homogeneity of bioactive sol–gel derived glasses in the system CaO–P2O5–SiO2. J Mater Synth Process. 1994;2:189–95.

    CAS  Google Scholar 

  37. Ramila A, Balas F, Vallet-Regí M. Synthesis routes for bioactive sol–gel glasses: alkoxides versus nitrates. Chem Mater. 2002;14:542–8.

    Article  CAS  Google Scholar 

  38. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ. Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int. 2010;36:1911–6.

    Article  CAS  Google Scholar 

  39. Livage J, Barboux P, Vandenborre MT, Schmutz C, Taulelle F. Sol–gel synthesis of phosphates. J Non-Cryst Solids. 1992;147–148:18–23.

    Article  Google Scholar 

  40. Lee BI, Samuels WD, Wang L-Q, Exarhos GJ. Sol–gel synthesis of phosphate ceramic composites I. J Mater Res. 1996;11:134–43.

    Article  CAS  Google Scholar 

  41. Ali AF, Mustarelli P, Magistris A. Optimal synthesis of organo-phosphate precursors for sol–gel preparations. Mater Res Bull. 1998;33:697–710.

    Article  CAS  Google Scholar 

  42. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  43. ISO 23317. Implants for surgery: in vitro evaluation for apatite-forming ability of implant materials, June (2007).

  44. Vallet-Regí M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol–gel glasses. J Biomed Mater Res. 1999;44:416–21.

    Article  Google Scholar 

  45. Siqueira RL. Sol-gel processing of vitreous and crystalline bioactive powders. Master of Science Dissertation, Universidade Federal de São Carlos, São Carlos (2009) (supervisor E. D. Zanotto).

  46. Ailing L, Dong Q. Phytic acid derived bioactive CaO–P2O5–SiO2 gel-glasses. J Mater Sci: Mater Med. 2011;22:2685–91.

    Article  Google Scholar 

Download references

Acknowledgments

We extend our appreciation to Dr. Aluísio A. Cabral Júnior, from the Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Brazil, for the DSC and TG analyses and to Dr. Olga S. Dymshits, from NITIOM State Optical Institute, Russian Federation, for the valuable instructions and discussions. We also thank the Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (2007/08179-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES for the financial support used to accomplish of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Luiz Siqueira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, R.L., Zanotto, E.D. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass–ceramics. J Mater Sci: Mater Med 24, 365–379 (2013). https://doi.org/10.1007/s10856-012-4797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4797-x

Keywords

Navigation