Skip to main content

Advertisement

Log in

Effect of solid to liquid ratio on the physical properties of injectable nanohydroxyapatite

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Injectable bone grafts based on nano hydroxyapatite, exhibiting a high cohesiveness were synthesized with three different solid to liquid (s/l) ratios. Effects of this ratio were studied on different structural and physical parameters of the injectable paste. Although crystallographic features remained insensitive to s/l ratio, we could observe the non linear correlations of zeta potential, cohesiveness, flowability and compressive strength of the injectable HA system as a function of s/l ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A. Mesenchymal cell response to nanosized biphasic calcium phosphate nanocomposites. Colloids Surf B. 2009;73:146–51.

    Article  CAS  Google Scholar 

  2. Chow LC, Takagi S. A natural bone cement—A laboratory novelty led to the development of revolutionary new biomaterials. J Res Nat Inst Stand Tech. 2001;106:1029–33.

    Article  CAS  Google Scholar 

  3. Fernandez E, Gill FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med. 1999;10:169–76.

    Article  CAS  Google Scholar 

  4. Brown WE, Chow LC. Dental Restorative Cement Pastes. US Patent 4, 518, 430, 1985, American Dental Association Health.

  5. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.

    Article  CAS  Google Scholar 

  6. Burguera EF, Xu HHK, Sun L. Injectable calcium phosphate cement: effect of powder to liquid ratio and needle size. J Biomed Mater Res. 2008;84B:493–502.

    Article  CAS  Google Scholar 

  7. Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res. 2002;62A:1–13.

    Article  Google Scholar 

  8. Hesaraki S, Moztarzadeh F, Sharifi D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with use of an effervescent additive. J Biomed Mater Res. 2007;83A:80–7.

    Article  Google Scholar 

  9. Hou Q, De Bank PA, Shakesheff KM. Injectable scaffold for tissue regeneration. J Mater Chem. 2004;14:1915–23.

    Article  CAS  Google Scholar 

  10. Yu T, Ye J, Wang Y. Synthesis and property of a novel calcium phosphate cement. J Biomed Mater Res. 2009;90B:745–51.

    Article  Google Scholar 

  11. Verma NP, Garai S, Sinha A. Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J Mater Sci Mater Med. 2012;23:913–9.

    Article  Google Scholar 

  12. Bohner M, Doebelin N, Baroud G. Theoritical and experimental approach to test the cohesion of calcium phosphate pastes. Eur Cells and Mater. 2006;12:26–35.

    CAS  Google Scholar 

  13. Sinha A, Nayar S, Agrawal A, Bhattacharya D, Ramachandrarao P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic and biopolymers. J Am Ceram Soc. 2003;86:357–60.

    Article  CAS  Google Scholar 

  14. Nayar S, Sinha A. Systematic evolution of a porous hydroxyapatite–poly(vinylalcohol)–gelatin composite. Colloids Surf B. 2004;35:29–32.

    Article  CAS  Google Scholar 

  15. Khairoun I, Magne D, Gauthier O, Bouler JM, Aguado E, Daculsi G. In vitro characterization and in vivo properties of a carbonated apatite bone cement. J Biomed Mater Res. 2002;60:633–42.

    Article  CAS  Google Scholar 

  16. Komath M, Varma HK. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci. 2003;26:415–22.

    Article  CAS  Google Scholar 

  17. Patil S, Sanberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28:4600–7.

    Article  CAS  Google Scholar 

  18. Lu HH, Pollack SR, Ducheyne P. 45S5 Bioactive glass surface charge variation and the formation of a surface calcium phosphate layer in a solution containing fibronectin. J Biomed Mater Res. 2001;54:454–61.

    Article  CAS  Google Scholar 

  19. Lu HH, Pollack SR, Ducheyne P. Temporal zeta potential variation of 45S5 bioactive glass immersed in an electrolyte solution. J Biomed Mater Res. 2000;51:80–7.

    Article  CAS  Google Scholar 

  20. Hui Y, Dong H, Shai-hong Z, Xue-bin Y, Yong-hong G, Hui Y, Li-xiang W. Preparation and application of hydroxyapatite nanoparticles/NR2B-siRNA complex. Trans nanoferrous Met Soc China. 2008;18:913–8.

    Article  Google Scholar 

  21. Tajima S, Nishimoto N, Kishi Y, Mastuya S, Ishikawa K. Effects of added sodium alignate on the mechanical strength of apatite cement. Dent Mater J. 2004;23:329–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support received from M/S IFGL Refractory, Kolkata to carry out the research project on Injectable Hydroxyapatite. Authors acknowledge Mr. Jay Narayan Patel, Analytical Chemistry Division, CSIR-NML for measuring the zeta potential of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, N.P., Sinha, A. Effect of solid to liquid ratio on the physical properties of injectable nanohydroxyapatite. J Mater Sci: Mater Med 24, 53–59 (2013). https://doi.org/10.1007/s10856-012-4790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4790-4

Keywords

Navigation