Skip to main content

Advertisement

Log in

Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 11 November 2012

Abstract

The hypothesis for this study was that there is no difference in mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation between calcium-phosphate (CaP) coatings with different crystal size deposited on different topographic surfaces of metal discs. Polished (P) and sand-blasted (SB) tantalum and TiAl6V4 discs were CaP coated by three methods—biomimetic (BioM), electrochemical at 20 mA/cm2 and at 6.5 mA/cm2—and cultured with MSCs. At days 4, 7 and 14, cell proliferation—alamarBlue® activity and DNA quantification—and differentiation down the osteogenic lineage—ALP activity normalised per amount of DNA and SEM (morphology)—were analysed. Results showed that MSCs proliferated more when cultured on the nano-sized BioM coatings compared to uncoated and electrochemically coated discs. MSCs also proliferated more on P surfaces than on SB and or electrochemical coatings. All the coatings induced osteogenic differentiation, which was greater on electrochemical coatings and SB discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matter P, Burch HB. Clinical experience with titanium implants, especially with the limited contact dynamic compression plate system. Arch Orthop Trauma Surg. 1990;109:311–3.

    Article  CAS  Google Scholar 

  2. Grübl A, Chiari C, Gruber M, Kaider A, Gottsauner-Wolf F. Cementless total hip arthroplasty with a tapered, rectangular titanium stem and threaded cup: a minimum ten-year follow-up. J Bone Joint Surg Am. 2002;81-A(3):425–31.

    Google Scholar 

  3. Unger AS, Lewis RJ, Gruen T. Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J Arthroplasty. 2005;20(8):1002–9.

    Article  Google Scholar 

  4. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopaedic surgery. Biomaterials. 2006;27:4671–81.

    Article  CAS  Google Scholar 

  5. Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJThM. Properties of calcium phosphate ceramics in relation to their in vivo behaviour. J Trauma Inj Infect Crit Care. 2000;48(1):179–86.

    Article  CAS  Google Scholar 

  6. Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. J Bone Joint Surg Am. 1994;76-A(2):159–71.

    Google Scholar 

  7. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  8. Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998;46(7):2519–27.

    Article  CAS  Google Scholar 

  9. Habibovic P, Barrère F, van Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc. 2002;85(3):517–22.

    Article  CAS  Google Scholar 

  10. Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res. 2004;19(9):2742–9.

    Article  CAS  Google Scholar 

  11. Bharati S, Sinha MK, Basu D. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. Bull Mater Sci. 2005;28(6):617–21.

    Article  CAS  Google Scholar 

  12. Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopaedic alloys. J Biomed Mater Res. 1996;30:287–94.

    Article  CAS  Google Scholar 

  13. Kashima DP, Rakngarm A. Calcium phosphate film coating on titanium substrate by electrochemical deposition. J Met Mater Miner. 2008;18(1):27–31.

    CAS  Google Scholar 

  14. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  Google Scholar 

  15. Ohgushi H, Dohi Y, Tamai S, Tabata S. Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mater Res. 1993;27:1401–7.

    Article  CAS  Google Scholar 

  16. Oreffo ROC, Driessens FCM, Planell JA, Triffitt JT. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements. Biomaterials. 1998;19:1845–54.

    Article  CAS  Google Scholar 

  17. Nishio K, Neo M, Akiyama H, Nishiguchi S, Kim HM, Kokubo T, Nakamura T. The effect of alkali-and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. J Biomed Mater Res. 2000;52(4):652–61.

    Article  CAS  Google Scholar 

  18. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49(2):155–66.

    Article  CAS  Google Scholar 

  19. Weiβenböck M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs. 2006;182:79–88.

    Article  Google Scholar 

  20. Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KDK, Lu WW. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res. 2007;82B:183–91.

    Article  CAS  Google Scholar 

  21. Kokubo T, Kim HM, Kawashita M, Nakamura T. Process of calcification on artificial materials. Z Kardiol. 2001;90(3):86–91.

    Google Scholar 

  22. Li J, Liao H, Sjöström M. Characterization of calcium phosphates precipitated from simulated body fluid of different buffering capacities. Biomaterials. 1997;18:743–7.

    Article  CAS  Google Scholar 

  23. Zhang Q, Chen J, Feng J, Cao Y, Deng C, Zhang X. Dissolution and mineralisation behaviours of HA coatings. Biomaterials. 2003;24:4741–8.

    Article  CAS  Google Scholar 

  24. Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng. 2005;C25:131–43.

    CAS  Google Scholar 

  25. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  CAS  Google Scholar 

  26. Hara M, Murakami T, Kobayashi E. In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. J Autoimmunity. 2008;30:163–71.

    Article  Google Scholar 

  27. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Article  CAS  Google Scholar 

  28. Vrouwenvelder WCA, Groot CG, de Groot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy and stainless steel. J Biomed Mater Res. 1993;27:465–75.

    Article  CAS  Google Scholar 

  29. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.

    Article  CAS  Google Scholar 

  30. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchynal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.

    Article  CAS  Google Scholar 

  31. Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3(3):269–305.

    CAS  Google Scholar 

  32. Ergun C, Liu H, Halloran JW, Webster TJ. Increased osteoblasts adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. J Biomed Mater Res. 2007;80A:990–7.

    Article  CAS  Google Scholar 

  33. Ohgushi H, Dohi Y, Yoshikawa T, Tamai S, Tabata S, Okunaga K, Shibuya T. Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J Biomed Mater Res. 1996;32:341–8.

    Article  CAS  Google Scholar 

  34. Jäger M, Urselmann F, Witte F, Zanger K, Li X, Ayers DC, Krauspe R. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. J Biomed Mater Res. 2008;86A:61–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena García-Gareta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Gareta, E., Hua, J., Knowles, J.C. et al. Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces. J Mater Sci: Mater Med 24, 199–210 (2013). https://doi.org/10.1007/s10856-012-4789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4789-x

Keywords

Navigation