Skip to main content
Log in

Simplified microenvironments and reduced cell culture size influence the cell differentiation outcome in cellular microarrays

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cellular microarrays present a promising tool for multiplex evaluation of the signalling effect of substrate-immobilized factors on cellular differentiation. In this paper, we compare the early myoblast-to-osteoblast cell commitment steps in response to a growth factor stimulus using standard well plate differentiation assays or cellular microarrays. Our results show that restraints on the cell culture size, inherent to cellular microarrays, impair the differentiation outcome. Also, while cells growing on spots with immobilised BMP-2 are early biased towards the osteoblast fate, longer periods of cell culturing in the microarrays result in cell proliferation and blockage of osteoblast differentiation. The results presented here raise concerns about the efficiency of cell differentiation when the cell culture dimensions are reduced to a simplified microspot environment. Also, these results suggest that further efforts should be devoted to increasing the complexity of the microspots composition, aiming to replace signalling cues missing in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen DS, Davis MM. Molecular and functional analysis using live cell microarrays. Curr Opin Chem Biol. 2006;10(1):28–34.

    Article  CAS  Google Scholar 

  2. Mei Y, Goldberg M, Anderson D. The development of high-throughput screening approaches for stem cell engineering. Curr Opin Chem Biol. 2007;11(4):388–93.

    Article  CAS  Google Scholar 

  3. Underhill GH, Bhatia SN. High-throughput analysis of signals regulating stem cell fate and function. Curr Opin Chem Biol. 2007;11(4):357–66.

    Article  CAS  Google Scholar 

  4. Soen Y, Mori A, Palmer TD, Brown PO. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol. 2006;2:37.

    Article  Google Scholar 

  5. Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, et al. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials. 2007;28(6):1048–60.

    Article  CAS  Google Scholar 

  6. LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol. 2009;1(1):70–9.

    Article  CAS  Google Scholar 

  7. Brafman DA, Shah KD, Fellner T, Chien S, Willert K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 2009;18(8):1141–54.

    Article  Google Scholar 

  8. Brafman DA, de Minicis S, Seki E, Shah KD, Teng DY, Brenner D, et al. Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integr Biol. 2009;1(8–9):513–24.

    Article  CAS  Google Scholar 

  9. Jones CN, Tuleuova N, Lee JY, Ramanculov E, Reddi AH, Zern MA, et al. Cultivating liver cells on printed arrays of hepatocyte growth factor. Biomaterials. 2009;30(22):3733–41.

    Article  CAS  Google Scholar 

  10. Ito Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter. 2008;4(1):46–56.

    Article  CAS  Google Scholar 

  11. Rodriguez-Segui SA, Pons Ximenez JI, Sevilla L, Ruiz A, Colpo P, Rossi F, et al. Quantification of protein immobilization on substrates for cellular microarray applications. J Biomed Mater Res A. 2011;98(2):245–56.

    Google Scholar 

  12. Toh YC, Blagovic K, Voldman J. Advancing stem cell research with microtechnologies: opportunities and challenges. Integr Biol. 2010;2(7–8):305–25.

    Article  Google Scholar 

  13. Tang J, Peng R, Ding JD. The regulation of stem cell differentiation by cell–cell contact on micropatterned material surfaces. Biomaterials. 2010;31(9):2470–6.

    Article  CAS  Google Scholar 

  14. Nelson CM, Chen CS. Cell-cell signaling by direct contact increases cell proliferation via a PI3 K-dependent signal. FEBS Lett. 2002;514(2–3):238–42.

    Article  CAS  Google Scholar 

  15. Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods. 2011;8(11):949–55.

    Article  CAS  Google Scholar 

  16. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366(1):51–7.

    Article  CAS  Google Scholar 

  17. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994;127(6 Pt 1):1755–66.

    Article  CAS  Google Scholar 

  18. Lopez-Rovira T, Chalaux E, Massague J, Rosa JL, Ventura F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem. 2002;277(5):3176–85.

    Article  CAS  Google Scholar 

  19. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells. 2002;7(9):949–60.

    Article  CAS  Google Scholar 

  20. Vinals F, Ventura F. Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. J Biol Chem. 2004;279(44):45766–72.

    Article  CAS  Google Scholar 

  21. Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem. 2005;280(36):31353–9.

    Article  CAS  Google Scholar 

  22. Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem. 2005;95(3):518–28.

    Article  CAS  Google Scholar 

  23. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26(1):127–34.

    Article  CAS  Google Scholar 

  24. Rodriguez-Segui SA, Pla-Roca M, Engel E, Planell JA, Martinez E, Samitier J. Influence of fabrication parameters in cellular microarrays for stem cell studies. J Mater Sci Mater Med. 2009;20(7):1525–33.

    Article  CAS  Google Scholar 

  25. Vinals F, Ventura F. Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. J Biol Chem. 2004;279(44):45766–72.

    Article  CAS  Google Scholar 

  26. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  Google Scholar 

  27. R Development Core Team. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria 2008.

  28. Buchanan LA, El-Ghannam A. Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins. J Biomed Mater Res A. 2010;93(2):537–46.

    Google Scholar 

  29. Soman P, Siedlecki CA. Effects of protein solution composition on the time-dependent functional activity of fibrinogen on surfaces. Langmuir. 2011;27(17):10814–9.

    Article  CAS  Google Scholar 

  30. Tagaya M, Ikoma T, Takemura T, Hanagata N, Yoshioka T, Tanaka J. Effect of interfacial proteins on osteoblast-like cell adhesion to hydroxyapatite nanocrystals. Langmuir. 2011;27(12):7645–53.

    Article  CAS  Google Scholar 

  31. von der Mark K, Ocalan M. Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation. 1989;40(2):150–7.

    Article  Google Scholar 

  32. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development. 1993;117(4):1183–98.

    CAS  Google Scholar 

  33. Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, et al. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J Cell Biol. 1999;144(6):1295–309.

    Article  CAS  Google Scholar 

  34. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994;127(6 Pt 1):1755–66.

    Article  CAS  Google Scholar 

  35. Lopez-Rovira T, Chalaux E, Massague J, Rosa JL, Ventura F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem. 2002;277(5):3176–85.

    Article  CAS  Google Scholar 

  36. Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, Rosen V, et al. Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res. 1997;230(2):342–51.

    Article  CAS  Google Scholar 

  37. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008;283(43):29119–25.

    Article  CAS  Google Scholar 

  38. Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip. 2005;5(1):14–9.

    Article  CAS  Google Scholar 

  39. Liu JM, Burkin DJ, Kaufman SJ. Increasing alpha(7)beta(1)-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol. 2008;294(2):C627–40.

    Article  CAS  Google Scholar 

  40. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  Google Scholar 

  41. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.

    Article  CAS  Google Scholar 

  42. Beach RL, Burton WV, Hendricks WJ, Festoff BW. Extracellular-matrix synthesis by skeletal-muscle in culture. Proteins and effect of enzyme degradation. J Biol Chem. 1982;257(19):1437–42.

    Google Scholar 

  43. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.

    Article  CAS  Google Scholar 

  44. Xiao GZ, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17(1):101–10.

    Article  CAS  Google Scholar 

  45. Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, et al. The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials. 2009;30(12):2393–9.

    Article  CAS  Google Scholar 

  46. Boudreau J, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J. 1999;339:481–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago A. Rodríguez-Seguí.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Seguí, S.A., Ortuño, M.J., Ventura, F. et al. Simplified microenvironments and reduced cell culture size influence the cell differentiation outcome in cellular microarrays. J Mater Sci: Mater Med 24, 189–198 (2013). https://doi.org/10.1007/s10856-012-4785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4785-1

Keywords

Navigation