Skip to main content

Advertisement

Log in

Controlled release of imatinib mesylate from PLGA microspheres inhibit craniopharyngioma mediated angiogenesis

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(lactic-co-glycolic acid) microspheres loaded with imatinib mesylate has been developed as a new therapeutic strategy to prevent craniopharyngioma recurrence. Microspheres composed of different lactic/glycolic acid ratios, molecular weights and drug compositions were synthesized and loaded with imatinib mesylate by modified double-emulsion/solvent evaporation technique and subsequently characterized by particle-size distribution, scanning electron microscopy, encapsulation efficiency and in vitro drug release. Inhibitory potential of imatinib containing microspheres on tumor neovascularization was investigated on craniopharyngioma tumor samples by rat cornea angiogenesis assay. Results showed that microspheres in different LA:GA ratios [LA:GA 50:50 (G50), 75:25 (G25), 85:15 (G15)] considerably reduced neovascularization induced by recurrent tumor samples in an in vivo angiogenesis assay (P < 0.01). Our data indicate that local delivery of imatinib mesylate to the post-surgical tumoral cavity using biodegradable microspheres may be a promising biologically selective approach to prevent the recurrence of craniopharyngiomas, via inhibition of neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Garnett MR, Puget S, Grill J, Sainte-Rose C. Craniopharyngioma. Orphanet J Rare Dis. 2007;2:18. doi:10.1186/1750-1172-2-18.

    Article  Google Scholar 

  2. Karavitaki N, Brufani C, Warner JT, Adams CB, Richards P, Ansorge O, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf). 2005;62(4):397–409. doi:10.1111/j.1365-2265.2005.02231.x.

    Article  CAS  Google Scholar 

  3. Symon L, Pell MF, Habib AH. Radical excision of craniopharyngioma by the temporal route: a review of 50 patients. Br J Neurosurg. 1991;5(6):539–49.

    Article  CAS  Google Scholar 

  4. Yasargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P. Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J Neurosurg. 1990;73(1):3–11.

    Article  CAS  Google Scholar 

  5. Habrand JL, Ganry O, Couanet D, Rouxel V, Levy-Piedbois C, Pierre-Kahn A, et al. The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys. 1999;44(2):255–63.

    Article  CAS  Google Scholar 

  6. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    Article  CAS  Google Scholar 

  7. Vidal S, Kovacs K, Lloyd RV, Meyer FB, Scheithauer BW. Angiogenesis in patients with craniopharyngiomas: correlation with treatment and outcome. Cancer. 2002;94(3):738–45. doi:10.1002/cncr.10281.

    Article  Google Scholar 

  8. Xu J, You C, Zhang S, Huang S, Cai B, Wu Z, et al. Angiogenesis and cell proliferation in human craniopharyngioma xenografts in nude mice. J Neurosurg. 2006;105(4 Suppl):306–10.

    Google Scholar 

  9. Xu J, Zhang S, You C, Wang X, Zhou Q. Microvascular density and vascular endothelial growth factor have little correlation with prognosis of craniopharyngioma. Surg Neurol. 2006;66(Suppl 1):S30–4. doi:10.1016/j.surneu.2006.05.047.

    Article  Google Scholar 

  10. Sun HI, Akgun E, Bicer A, Ozkan A, Bozkurt SU, Kurtkaya O, et al. Expression of angiogenic factors in craniopharyngiomas: implications for tumor recurrence. Neurosurgery. 2010;66(4):744–50.

    Article  Google Scholar 

  11. Kilic T, Alberta JA, Zdunek PR, Acar M, Iannarelli P, O’Reilly T, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res. 2000;60(18):5143–50.

    CAS  Google Scholar 

  12. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.

    Article  CAS  Google Scholar 

  13. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86(1):33–48.

    Article  CAS  Google Scholar 

  14. Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Crit Rev Ther Drug Carrier Syst. 1995;12(1):1–99.

    Article  CAS  Google Scholar 

  15. Lam XM, Duenas ET, Daugherty AL, Levin N, Cleland JL. Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes. J Control Release. 2000;67(2–3):281–92.

    Article  CAS  Google Scholar 

  16. Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res. 1991;8(6):713–20.

    Article  CAS  Google Scholar 

  17. Whittlesey KJ, Shea LD. Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface. Exp Neurol. 2004;190(1):1–16. doi:10.1016/j.expneurol.2004.06.020.

    Article  CAS  Google Scholar 

  18. Lagarce F, Faisant N, Desfontis JC, Marescaux L, Gautier F, Richard J, et al. Baclofen-loaded microspheres in gel suspensions for intrathecal drug delivery: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2005;61(3):171–80. doi:10.1016/j.ejpb.2005.04.004.

    Article  CAS  Google Scholar 

  19. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  Google Scholar 

  20. Benny O, Duvshani-Eshet M, Cargioli T, Bello L, Bikfalvi A, Carroll RS, et al. Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin Cancer Res. 2005;11(2 Pt 1):768–76.

    CAS  Google Scholar 

  21. Yemisci M, Bozdag S, Cetin M, Soylemezoglu F, Capan Y, Dalkara T, et al. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery. 2006;59(6):1296–302. doi:10.1227/01.NEU.0000245607.99946.8F. discussion 302-3.

    Article  Google Scholar 

  22. Benny O, Menon LG, Ariel G, Goren E, Kim SK, Stewman C, et al. Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth. Clin Cancer Res. 2009;15(4):1222–31. doi:10.1158/1078-0432.CCR-08-1316.

    Article  CAS  Google Scholar 

  23. Ong BY, Ranganath SH, Lee LY, Lu F, Lee HS, Sahinidis NV, et al. Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials. 2009;30(18):3189–96. doi:10.1016/j.biomaterials.2009.02.030.

    Article  CAS  Google Scholar 

  24. Ranganath SH, Fu Y, Arifin DY, Kee I, Zheng L, Lee H-S, et al. The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials. 2010;31(19):5199–207. doi:10.1016/j.biomaterials.2010.03.002.

    Article  CAS  Google Scholar 

  25. O’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28(1):25–42. doi:10.1016/s0169-409x(97)00049-5.

    Article  Google Scholar 

  26. Auerbach R, Akhtar N, Lewis RL, Shinners BL. Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev. 2000;19(1–2):167–72.

    Article  CAS  Google Scholar 

  27. Toktas ZO, Akgun E, Ozkan A, Bozkurt SU, Bekiroglu N, Seker A, et al. Relationship of angiogenic potential with clinical features in cranial meningiomas: a corneal angiogenesis study. Neurosurgery. 2010;67(6):1724–32. doi:10.1227/NEU.0b013e3181f9f310. discussion 32.

    Article  Google Scholar 

  28. Konya D, Yildirim O, Kurtkaya O, Kilic K, Black PM, Pamir MN, et al. Testing the angiogenic potential of cerebrovascular malformations by use of a rat cornea model: usefulness and novel assessment of changes over time. Neurosurgery. 2005;56(6):1339–45. discussion 45-6.

    Article  Google Scholar 

  29. Kilic K, Konya D, Kurtkaya O, Sav A, Pamir MN, Kilic T. Inhibition of angiogenesis induced by cerebral arteriovenous malformations using gamma knife irradiation. J Neurosurg. 2007;106(3):463–9. doi:10.3171/jns.2007.106.3.463.

    Article  Google Scholar 

  30. Ozkan A, Guduk M, Atabay KD, Uyar SB, Seker A, Konya D, et al. High angiogenic potential in an in vivo rat corneal model is associated with shorter disease-free survival in low-grade oligodendrogliomas. J Clin Neurosci. 2010;18(1):109–13. doi:10.1016/j.jocn.2010.05.034.

    Article  Google Scholar 

  31. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: a critical overview. Clin Chem. 2003;49(1):32–40.

    Article  CAS  Google Scholar 

  32. Jain RK, Schlenger K, Hockel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med. 1997;3(11):1203–8.

    Article  CAS  Google Scholar 

  33. Fahlbusch R, Honegger J, Paulus W, Huk W, Buchfelder M. Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg. 1999;90(2):237–50.

    Article  CAS  Google Scholar 

  34. Karavitaki N, Cudlip S, Adams CB, Wass JA. Craniopharyngiomas. Endocr Rev. 2006;27(4):371–97. doi:10.1210/er.2006-0002.

    Article  Google Scholar 

  35. Vidal S, Scheithauer BW, Kovacs K, Lloyd RV. Angiogenesis and the growth potential of craniopharyngiomas. Endocr Pathol. 2005;16(3):219–28. EP:16:3:219 [pii].

    Article  Google Scholar 

  36. Fakhrai N, Neophytou P, Dieckmann K, Nemeth A, Prayer D, Hainfellner J, et al. Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir. 2004;146(11):1255–8. doi:10.1007/s00701-004-0374-5.

    Article  CAS  Google Scholar 

  37. Bihorel S, Camenisch G, Gross G, Lemaire M, Scherrmann J-M. Influence of hydroxyurea on imatinib mesylate (gleevec) transport at the mouse blood-brain barrier. Drug Metab Dispos. 2006;34(12):1945–9. doi:10.1124/dmd.106.010975.

    Article  CAS  Google Scholar 

  38. Wen PY, Yung WKA, Lamborn KR, Dahia PL, Wang Y, Peng B, et al. Phase I/II study of ımatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res. 2006;12(16):4899–907. doi:10.1158/1078-0432.ccr-06-0773.

    Article  CAS  Google Scholar 

  39. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52. doi:10.1016/j.ijpharm.2011.05.049.

    Article  CAS  Google Scholar 

  40. Lee Y-H, Mei F, Bai M-Y, Zhao S, Chen D-R. Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Controlled Release. 2010;145(1):58–65. doi:10.1016/j.jconrel.2010.03.014.

    Article  CAS  Google Scholar 

  41. Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm Res. 2003;20(7):1055–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Turker Kilic MD PhD is a member of Turkish Academy of Sciences. Scientific activities of Turker Kilic are supported by TUBA. Imatinib mesylate has been kindly provided by Novartis, Basel. This study was supported by both TUBA and The Scientific and Technological Research Council of Turkey (TUBITAK) 1001 research grants (SBAG-108S062).

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oksan Karal-Yilmaz or Turker Kilic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karal-Yilmaz, O., Ozkan, A., Akgun, E. et al. Controlled release of imatinib mesylate from PLGA microspheres inhibit craniopharyngioma mediated angiogenesis. J Mater Sci: Mater Med 24, 147–153 (2013). https://doi.org/10.1007/s10856-012-4784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4784-2

Keywords

Navigation