Skip to main content
Log in

Controlled release of small molecules from silica xerogel with limited nanoporosity

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Conventional sol–gel processing requires several distinct steps involving hydrolysis, condensation and drying to obtain a highly porous, glassy solid material. With the goal of achieving controlled release of small molecules, herein we focus on the acceleration of the condensation and drying steps by casting the hydrolyzed sol on a large open surface to achieve a denser 100 % silica xerogel structure. Thus, cast xerogel with a more limited porosity was prepared. The effect of synthesis parameters during sol–gel synthesis on the release kinetics of bupivacaine, vancomycin and cephalexin was investigated. The release kinetics fitted well with the Higuchi model, suggesting a diffusional release mechanism. Combining the release and nanostructure data, the formation mechanism of cast xerogel is described. Without introducing additional precursors or additives into sol–gel systems, sol–gel casting is an easy technique that further expands the applicability of sol–gel materials as excellent carriers for the controlled release of a variety of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ducheyne P, Qiu QQ. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  CAS  Google Scholar 

  2. Li ZZ, Wen LX, Shao L, Chen JF. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release. 2004;98:245–54.

    Article  CAS  Google Scholar 

  3. Maver U, Godec A, Bele M, Planinsek O, Gaberscek M, Srcic S, Jamnik J. Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharmaceut. 2007;330:164–74.

    Article  CAS  Google Scholar 

  4. Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Piñón-Segundo E. Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Del. 2009;6:485–98.

    Article  CAS  Google Scholar 

  5. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliver Rev. 2008;60:1278–88.

    Article  CAS  Google Scholar 

  6. Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials. 2009;30:850–8.

    Article  CAS  Google Scholar 

  7. Park HS, Kim CW, Lee HJ, Choi JH, Lee SG, Yun YP, Kwon IC, Lee SJ, Jeong SY, Lee SC. A mesoporous silica nanoparticles with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology. 2010;21:1–9.

    Google Scholar 

  8. Nicoll SB, Radin S, Santos EM, Tuan RS, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-β1 from a novel porous glass carrier. Biomaterials. 1997;18:853–9.

    Article  CAS  Google Scholar 

  9. Santos EM, Radin S, Ducheyne P. Sol-gel derived carrier for the controlled release of proteins. Biomaterials. 1999;20:1695–700.

    Article  CAS  Google Scholar 

  10. Falaize S, Radin S, Ducheyne P. In vitro behavior of silica-based xerogels intended as controlled release carriers. J Am Ceram Soc. 1999;82:969–76.

    Article  CAS  Google Scholar 

  11. Radin S, Ducheyne P, Kamplain T, Tan B. Silica sol-gel for the controlled release of antibiotics I. Synthesis, characterization, and in vitro release. J Biomed Mater Res. 2001;57:313–20.

    Article  CAS  Google Scholar 

  12. Yao J, Radin S, Leboy PS, Ducheyne P. The effect of bioactive glass content on synthesis and bioactivity of composite poly(lactic-co-glylic acid)/bioactive glass substrate for tissue engineering. Biomaterials. 2005;26:1935–43.

    Article  CAS  Google Scholar 

  13. Prokopowicz M. Silica-polyethylene glycol matrix synthesis by sol-gel method and evaluation for diclofenac diethyloammonium release. Drug Deliv. 2007;14:129–38.

    Article  CAS  Google Scholar 

  14. Costache MC, Qu H, Ducheyne P, Devore DI. Polymer-xerogel composites for controlled release wound dressings. Biomaterials. 2010;31:6336–43.

    Article  CAS  Google Scholar 

  15. Czarnobaj K. Sol-gel-processed silica/polydimethylsiloxane/calcium xerogels as polymeric matrices for metronidazole delivery system. Polym Bull. 2010;66:223–37.

    Article  Google Scholar 

  16. Prokopowicz M. In vitro controlled release of doxorubicin from silica xerogels. J Pharm Pharmacol. 2010;59:1365–73.

    Article  Google Scholar 

  17. Radin S, Ducheyne P. Nanostructural control of implantable xerogels for the controlled release of biomolecules. In: Reis RL, Weiner S, editors. Learning from nature how to design new implantable materials: from biomineralization fundamentals to biomimetic materials and processing routes. Netherland: Kluwer Academic Publishers; 2004. p. 59–74.

    Google Scholar 

  18. Aughenbaugh W, Radin S, Ducheyne P. Silica sol gel for the controlled release of antibiotics II. The effect of synthesis parameters on the in vitro release kinetics of vancomycin. J Biomed Mater Res. 2001;57:321–6.

    Article  CAS  Google Scholar 

  19. Roveri N, Morpurgo M, Palazzo B, Parma B. Vivi L. Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal Bioanal Chem. 2005;381:601–6.

    Article  CAS  Google Scholar 

  20. Böttcher H, Slowik P, Süß W. Sol-gel carrier systems for controlled drug delivery. J Sol-Gel Sci Technol. 1998;13:277–81.

    Google Scholar 

  21. Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J Control Release. 2001;76:227–38.

    Article  CAS  Google Scholar 

  22. Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release. 2004;98:209–17.

    Article  CAS  Google Scholar 

  23. Xue JM, Tan CH, Lukito D. Biodegradable polymer-silica xerogel composite microspheres for controlled release of gentamicin. J Biomed Mater Res B. 2006;78B:417–22.

    Article  CAS  Google Scholar 

  24. Wen LX, Li ZZ, Zou HK, Liu AQ, Chen JF. Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci. 2005;61:583–90.

    Article  CAS  Google Scholar 

  25. Tan S, Wu Q, Wang J, Wang Y, Liu X, Sui K, Deng X, Wang H, Wu M. Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Micropor Mesopor Mat. 2011;142:601–8.

    Article  CAS  Google Scholar 

  26. Jiang X, Liu N, Assink RA, Jiang Y, Brinker CJ. Photoresponsive release from azobenzene-modified single cubic crystal NaCl/silica particles. J Nanomater. 2011;2011:1–6.

    Google Scholar 

  27. Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F. Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol. 2009;191:13–20.

    Article  CAS  Google Scholar 

  28. Ackerman BH, Buono FAD. In vitro testing of antibiotics. Pharmacotherpy. 1996;16:201–17.

    CAS  Google Scholar 

  29. Ahola MS, Sailynoja ES, Raitavuo MH, Vaahtio MM, Salonen JI, Yli-Urpo AUO. In vitro release of heparin from silica xerogels. Biomaterials. 2001;22:2163–70.

    Article  CAS  Google Scholar 

  30. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16:1959–66.

    Article  Google Scholar 

  31. Basaldella EI, Legnoverde MS. Functionalized silica matrices for controlled delivery of cephalexin. J Sol-Gel Sci Technol. 2010;56:191–6.

    Article  CAS  Google Scholar 

  32. Hatanaka T, Morigaki S, Aiba T, Katayama K, Koizumi T. Effect of pH on the skin permeability of a zwitterionic drug, cephalexin. Int J Pharmaceut. 1995;125:195–203.

    Article  CAS  Google Scholar 

  33. Saravanan M, Nataraj KS, Ganesh KS. Hydroxypropyl methylcellulose based cephalexin extended release tablets: Influence of tablet formulation, hardness and storage on in vitro release kinetics. Chem Pharm Bull. 2003;51:978–83.

    Article  CAS  Google Scholar 

  34. Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J. In vitro evaluation of sol-gel processed spray dried silica gel microspheres as carrier in controlled drug delivery. Int J Pharmaceut. 2000;200:223–9.

    Article  CAS  Google Scholar 

  35. Kortesuo P, Ahola M, Kangas M, Jokinen M, Leino T, Vuorilehto L, Laakso S, Kiesvaara J, Yli-Urpp A, Marvola M. Effect of synthesis parameters of the sol-gel-processed spray-dried silica gel microparticles on the release rate of dexmedetomidine. Biomaterials. 2002;23:2795–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of a Chinese Scholarship Council Fellowship and the support from U.S. Army Medical Research and Materiel Command contract # W81XWH-10-2-0156.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyun Guo or Paul Ducheyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Qu, H., Agrawal, A. et al. Controlled release of small molecules from silica xerogel with limited nanoporosity. J Mater Sci: Mater Med 24, 137–146 (2013). https://doi.org/10.1007/s10856-012-4783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4783-3

Keywords

Navigation