Skip to main content

Advertisement

Log in

Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (hMSCs) typically range in size from 10 to 50 μm and proteins that mediate hMSC adhesion and differentiation usually have a size of a few nanometers. Nanomaterials with a feature size smaller than 100 nm have demonstrated the unique capability of promoting osteoblast (bone forming cell) adhesion and long-term functions, leading to more effective bone tissue regeneration. For new bone deposition, MSCs have to be recruited to the injury or disease sites and then differentiate into osteoblasts. Therefore, designing novel nanomaterials that are capable of attracting MSCs and directing their differentiation is of great interest to many clinical applications. This in vitro study investigated the effects of nanophase hydroxyapatite (nano-HA), nano-HA/poly(lactide-co-glycolide) (PLGA) composites and a bone morphogenetic protein (BMP-7) derived short peptide on osteogenic differentiation of hMSCs. The short peptide was loaded by physical adsorption to nano-HA or by dispersion in nanocomposites and in PLGA to determine their effects on hMSC adhesion and differentiation. The results showed that the nano-HA/PLGA composites promoted hMSC adhesion as compared to the PLGA controls. Moreover, nano-HA/PLGA composites promoted osteogenic differentiation of hMSCs to a similar extent with or without the presence of osteogenic factors in the media. In the MSC growth media without the osteogenic factors, the nanocomposites supported greater calcium-containing bone mineral deposition by hMSC than the BMP-derived short peptide alone. The nanocomposites provided promising alternatives in controlling the adhesion and differentiation of hMSCs without osteogenic factors from the culture media, and, thus, should be further studied for clinical translation and the development of novel nanocomposite-guided stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu H, Slamovich EB, Webster TJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A. 2006;78(4):798–807.

    Google Scholar 

  2. Liu H, Yazici H, Ergun C, Webster TJ, Bermek H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008;4(5):1472–9.

    Article  CAS  Google Scholar 

  3. Ergun C, Liu H, Halloran JW, Webster TJ. Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. J Biomed Mater Res A. 2007;80(4):990–7.

    Google Scholar 

  4. Liu H, Webster TJ. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int J Nanomed. 2010;5:299–313.

    CAS  Google Scholar 

  5. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2006;28(2):354–69.

    Article  CAS  Google Scholar 

  6. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990;87(6):2220–4.

    Article  CAS  Google Scholar 

  7. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242(4885):1528–34.

    Article  CAS  Google Scholar 

  8. Glassman SD, Carreon LY, Campbell MJ, Johnson JR, Puno RM, Djurasovic M, Dimar JR. The perioperative cost of infuse bone graft in posterolateral lumbar spine fusion. Spine J. 2008;8(3):443–8.

    Article  Google Scholar 

  9. Smoljanovic T, Bicanic G, Bojanic I. Update of comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2010;66(5):E1030. author reply E1030.

    Article  Google Scholar 

  10. Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 2008;62(5 Suppl 2):ONS423-31; discussion ONS431.

    Google Scholar 

  11. Haid RW, Jr, Branch CL, Jr, Alexander JT, Burkus JK. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 2004;4(5):527–38. discussion 538-9.

    Article  Google Scholar 

  12. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE (R) Bone Graft). Int Orthop. 2007;31(6):729–34.

    Article  Google Scholar 

  13. Chen Y, Webster TJ. Increased osteoblast functions in the presence of BMP-7 short peptides for nanostructured biomaterial applications. J Biomed Mater Res A. 2009;91(1):296–304.

    Google Scholar 

  14. Liu H, Webster TJ. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J Biomed Mater Res A. 2010;93(3):1180–92.

    Google Scholar 

  15. Lock J, Liu H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomed. 2011;6:2769–77.

    CAS  Google Scholar 

  16. Sato M, Sambito MA, Aslani A, Kalkhoran NM, Slamovich EB, Webster TJ. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials. 2006;27(11):2358–69.

    Article  CAS  Google Scholar 

  17. Ioku K, Yoshimura M. Stoichiometric apatite fine single crystals by hydrothermal synthesis. Phosphorus Res Bull. 1991;1:15–20.

    Google Scholar 

  18. Somiya S, Ioku K, Yoshimura M. Hydrothermal synthesis and characterization of fine apatite crystals. Magnes Sci Technol Appl. 1988;34:371–8.

    Google Scholar 

  19. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27(29):5014–26.

    Article  CAS  Google Scholar 

  20. Coathup M, Smith N, Kingsley C, Buckland T, Dattani R, Ascroft P, Blumn G. Impaction grafting with a bone-graft substitute in a sheep model of revision hip replacement. J Bone Joint Surg Br. 2008;90B(2):246–53.

    Google Scholar 

  21. Siffert RS. The role of alkaline phosphatase in osteogenesis. J Exp Med. 1951;93(5):415–29.

    Article  CAS  Google Scholar 

  22. Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A. 2008;84(1):265–72.

    Google Scholar 

  23. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27(14):2798–805.

    Article  CAS  Google Scholar 

  24. Zhang R, Ma PX. Degradation behavior of porous poly(a-hydroxy acids)/hydroxyapatite composite scaffolds. American Chemical Society. 2000;41(2):1618–19.

    Google Scholar 

  25. Noohom W, Jack KS, Martin D, Trau M. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomed Mater. 2009;4(1):015003.

    Article  Google Scholar 

  26. Palin E, Liu HN, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology. 2005;16(9):1828–35.

    Article  CAS  Google Scholar 

  27. Liu HN, Slamovich EB, Webster TJ. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites. Nanotechnology. 2005;16(7):S601–8.

    Article  Google Scholar 

  28. Senta H, Bergeron E, Drevelle O, Park H, Faucheux N. Combination of synthetic peptides derived from bone morphogenetic proteins and biomaterials for medical applications. Can J Chem Eng. 2011;89(2):227–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the NSF BRIGE award (CBET 1125801), Burroughs Wellcome Fund (1011235), and the University of California for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huinan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, J., Nguyen, T.Y. & Liu, H. Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J Mater Sci: Mater Med 23, 2543–2552 (2012). https://doi.org/10.1007/s10856-012-4709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4709-0

Keywords

Navigation