Skip to main content

Advertisement

Log in

Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol–gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11–19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hou CH, Yang RS, Hou SM. Hospital-based allogenic bone bank-10-year experience. J Hosp Infect. 2005;59:41–5.

    Article  Google Scholar 

  2. Nishida J, Shimarnura T. Methods of reconstruction for bone defect after tumor excision: a review of alternatives. Med Sci Monit. 2008;14:RA107–13.

    Google Scholar 

  3. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone-graft substitutes. Orthop Clin North Am. 1987;18:323–34.

    CAS  Google Scholar 

  4. Ishihara K, Arai H, Nakabayashi N, Morita S, Furuya K. Adhesive bone-cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res. 1992;26:937–45.

    Article  CAS  Google Scholar 

  5. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. 3. Porous versus dense ceramics. J Biomed Mater Res. 1994;28:1303–9.

    Article  CAS  Google Scholar 

  6. Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. J Mater Sci. 1996;31:1–21.

    Article  CAS  Google Scholar 

  7. Tas AC. Preparation of porous apatite granules from calcium phosphate cement. J Mater Sci: Mater Med. 2008;19:2231–9.

    Article  CAS  Google Scholar 

  8. Hesaraki S, Zamanian A, Moztarzadeh F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: acetic acid versus citric acid. J Biomed Mater Res Part B. 2008;86:208–16.

    Google Scholar 

  9. Yu NYC, Schindeler A, Little DG, Ruys AJ. Biodegradable poly(alpha-hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res Part B. 2010;93:285–95.

    Google Scholar 

  10. Silva TSN, Primo BT, Silva AN, Machado DC, Viezzer C, Santos LA. Use of calcium phosphate cement scaffolds for bone tissue engineering: in vitro study. Acta Cir Bras. 2011;26:7–11.

    Article  Google Scholar 

  11. Maier AK, Dezmirean L, Will J, Greil P. Three-dimensional printing of flash-setting calcium aluminate cement. J Mater Sci. 2011;46:2947–54.

    Article  CAS  Google Scholar 

  12. Klammert U, Vorndran E, Reuther T, Muller FA, Zorn K, Gbureck U. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J Mater Sci: Mater Med. 2010;21:2947–53.

    Article  CAS  Google Scholar 

  13. Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24:2853–62.

    Article  CAS  Google Scholar 

  14. Chang MC, Ko CC, Douglas WH. Modification of hydroxyapatite/gelatin composite by polyvinylalcohol. J Mater Sci. 2005;40:2723–7.

    Article  CAS  Google Scholar 

  15. Chang MC, Douglas WH. Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J Mater Sci: Mater Med. 2007;18:2045–51.

    Article  CAS  Google Scholar 

  16. Dunn B, Miller JM, Dave BC, Valentine JS, Zink JI. Strategies for encapsulating biomolecules in sol-gel matrices. Acta Mater. 1998;46:737–41.

    Article  CAS  Google Scholar 

  17. Coradin T, Bah S, Livage J. Gelatine/silicate interactions: from nanoparticles to composite gels. Colloid Surf B Biointerfaces. 2004;35:53–8.

    Article  CAS  Google Scholar 

  18. Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.

    Article  CAS  Google Scholar 

  19. Ren L, Tsuru K, Hayakawa S, Osaka A. In vitro evaluation of osteoblast response to sol-gel derived gelatin-siloxane hybrids. J Sol-Gel Sci Technol. 2003;26:1137–40.

    Article  CAS  Google Scholar 

  20. Ko CC, Luo TJM, Chi L, Ma A. Hydroxyapatite/gemosil nanocomposite. In: Advances in bioceramics and porous ceramics: ceramic engineering and science proceedings, vol. 29. John Wiley & Sons; 2009. p. 123–35.

  21. Luo TJM, Ko CC, Chiu CK, Llyod J, Huh U. Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites. J Sol-Gel Sci Technol. 2010;53:459–65.

    Article  CAS  Google Scholar 

  22. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329:77–84.

    Article  CAS  Google Scholar 

  23. Ferreira J. Engineering hydroxyapatite-gelatin nanocomposites with MAPC cells for calvarium bone regeneration. Ph.D., University of North Carolina-Chapel Hill; 2011 (923638399).

  24. Zholobenko V, Garforth A, Dwyer J. TGA-DTA study on calcination of zeolitic catalysts. Thermochim Acta. 1997;294:39–44.

    Article  CAS  Google Scholar 

  25. Word AG, Courts A. The science and technology of gelatin. London: Academic Press; 1977.

    Google Scholar 

  26. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS. Cell-adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disk apparatus. J Biomed Mater Res. 1988;22:383–404.

    Article  CAS  Google Scholar 

  27. Veis A. The macromolecular chemistry of gelatin. New York: Academic Press; 1964.

    Google Scholar 

  28. Darder M, Ruiz AI, Aranda P, Van Damme H, Ruiz-Hitzky E. Bio-nanohybrids based on layered inorganic solids: gelatin nanocomposites. Curr Nanosci. 2006;2:231–41.

    CAS  Google Scholar 

  29. Ren L, Tsuru K, Hayakawa S, Osaka A. Synthesis and characterization of gelatin-siloxane hybrids derived through sol-gel procedure. J Sol-Gel Sci Technol. 2001;21:115–21.

    Article  Google Scholar 

  30. Coradin T, Durupthy O, Livage J. Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir. 2002;18:2331–6.

    Article  CAS  Google Scholar 

  31. Dupraz AMP, deWijn JR, vanderMeer SAT, deGroot K. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res. 1996;30:231–8.

    Article  CAS  Google Scholar 

  32. Laird DA. Bonding between polyacrylamide and clay mineral surfaces. Soil Sci. 1997;162:826–32.

    Article  CAS  Google Scholar 

  33. Lee SR, Park HM, Lim H, Kang TY, Li XC, Cho WJ, Ha CS. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer. 2002;43:2495–500.

    Article  CAS  Google Scholar 

  34. Tang Y, Finlay JA, Kowalke GL, Meyer AE, Bright FV, Callow ME, Callow JA, Wendt DE, Detty MR. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling. 2005;21:59–71.

    Article  CAS  Google Scholar 

  35. Coradin T, Livage J. Effect of some amino acids and peptides on silicic acid polymerization. Colloid Surf B Biointerfaces. 2001;21:329–36.

    Article  CAS  Google Scholar 

  36. Coradin T, Coupe A, Livage J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. Colloid Surf B Biointerfaces. 2003;29:189–96.

    Article  CAS  Google Scholar 

  37. Segtnan VH, Isaksson T. Temperature, sample and time dependent structural characteristics of gelatine gels studied by near infrared spectroscopy. Food Hydrocolloids. 2004;18:1–11.

    Article  CAS  Google Scholar 

  38. Farhat IA, Orset S, Moreau P, Blanshard JMV. FTIR study of hydration phenomena in protein-sugar systems. J Colloid Interface Sci. 1998;207:200–8.

    Article  CAS  Google Scholar 

  39. Fujitsu M, Hattori M, Tamura T. Effects of hydroxy compounds on gel formation of gelatin. Colloid Polym Sci. 1997;275:67–72.

    Article  CAS  Google Scholar 

  40. Wu J, Chiu SC, Pearce EM, Kwei TK. Effects of phenolic compounds on gelation behavior of gelatin gels. J Polym Sci Polym Chem. 2001;39:224–31.

    Article  CAS  Google Scholar 

  41. Baji A, Wong SC, Srivatsan TS, Njus GO, Mathur G. Processing methodologies for polycaprolactone-hydroxyapatite composites: a review. Mater Manuf Process. 2006;21:211–8.

    Article  CAS  Google Scholar 

  42. Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S, Martini D, Giunti A. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res Part A. 2006;76A:151–62.

    Article  CAS  Google Scholar 

  43. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules. 2007;8:631–7.

    Article  CAS  Google Scholar 

  44. Schutte CL. Environmental durability of glass-fiber composites. Mater Sci Eng R Rep. 1994;13:265–324.

    Article  Google Scholar 

  45. Kent MS, Smith GS, Baker SM, Nyitray A, Browning J, Moore G, Hua DW. The effect of a silane coupling agent on water adsorption at a metal/polymer interface studied by neutron reflectivity and angle-resolved X-ray photoelectron spectroscopy. J Mater Sci. 1996;31:927–37.

    Article  CAS  Google Scholar 

  46. Dumas J, Quinson JF, Bovier C, Baza S, Serughetti J. Correlations between textural and mechanical-properties in wet silica-gels. J Non-Cryst Solids. 1986;82:220–4.

    Article  CAS  Google Scholar 

  47. German R, Guzowski M, Wright D. The colour of gold-silver-copper alloys. Gold Bull. 1980;13:113–6.

    Article  CAS  Google Scholar 

  48. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593–6.

    Article  CAS  Google Scholar 

  49. Kitsugi T, Nakamura T, Oka M, Yan WQ, Goto T, Shibuya T, Kokubo T, Miyaji S. Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3). J Biomed Mater Res. 1996;32:149–56.

    Article  CAS  Google Scholar 

  50. Malmsten M. Formation of adsorbed protein layers. J Colloid Interface Sci. 1998;207:186–99.

    Article  CAS  Google Scholar 

  51. Yoon JY, Park HY, Kim JH, Kim WS. Adsorption of BSA on highly carboxylated microspheres—quantitative effects of surface functional groups and interaction forces. J Colloid Interface Sci. 1996;177:613–20.

    Article  CAS  Google Scholar 

  52. Topoglidis E, Cass AEG, O’Regan B, Durrant JR. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem. 2001;517:20–7.

    Article  CAS  Google Scholar 

  53. Utesch T, Daminelli G, Mroginski MA. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance. Langmuir. 2011;27:13144–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by NIH/NIDCR K08DE018695, NC Biotech and American Association for Orthodontist Foundation. Although CC Ko is the co-founder of Ironwood Materials Science Inc., this study was not supported by any companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chang Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CK., Ferreira, J., Luo, TJ.M. et al. Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration. J Mater Sci: Mater Med 23, 2115–2126 (2012). https://doi.org/10.1007/s10856-012-4691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4691-6

Keywords

Navigation