Skip to main content
Log in

Single step preparation of nanosilver loaded calcium phosphate by low temperature co-conversion process

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The preparation and characterization of nanosilver loaded calcium phosphate aiming to enhance the bactericidal performance by a single step co-conversion technique using low temperature ion exchange phosphorization in combination with Tollen’s reaction were performed. Silver nitrate was used as a silver ion supply source (0.001–0.1 M) and glucose was employed as a reducing agent. After conversion, surface and shell zones of all samples comprised hydroxyapatite and metallic silver as the main phases regardless of silver nitrate concentration. However, hydroxyapatite, residual calcium sulfate and monetite were found in the core zone when using silver nitrate concentration lower than 0.1 M. The microstructure of all samples comprised the distribution of spherical-shaped silver nanoparticles within the cluster of calcium phosphate nanocrystals. Total silver content (range, 0.09–6.5 %) in the converted samples was found to linearly increase with increasing silver nitrate content. Flexural modulus and strength of converted samples generally decreased with increasing silver content. Effective antibacterial activity of two selected samples (0.001 and 0.005 M AgNO3) against two bacterial strains (Pseudomonas aeruginosa and Staphylococcus aureus) was observed. Cytotoxic potentials by MTT assay of both samples were observed at 24 and 48 h extraction respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–51.

    Article  CAS  Google Scholar 

  2. Janardhanana R, Karuppaiaha M, Hebalkara N, Rao TN. Synthesis and surface chemistry of nano silver particles. Polyhedron. 2009;28(12):2522–30.

    Article  Google Scholar 

  3. Sarkar S, Jana AD, Samanta SK, Mostafa G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron. 2007;26:4419–26.

    Article  CAS  Google Scholar 

  4. Yin HQ, Langford R, Burrel RE. Comparative evaluation of the antimicrobial activity of acticoat antimicrobial barrier dressing. J Burn Care Rehabil. 1999;20:195–200.

    Article  CAS  Google Scholar 

  5. Hwang KS, Hwangbo S, Kim JT. Silver-doped calcium phosphate nanopowders prepared by electrostatic spraying. J Nanopart Res. 2008;10(8):1337–41.

    Article  CAS  Google Scholar 

  6. Nirmala R, Sheikh FA, Kanjwal MA, Lee JH, Park SJ, Navamathavan R, Kim HY. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J Nanopart Res. 2011;13(5):1917–27.

    Article  CAS  Google Scholar 

  7. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512–7.

    Article  CAS  Google Scholar 

  8. Chen Y, Zheng X, Xie Y, Ji H, Ding C, Li H, Dai K. Silver release from silver-containing hydroxyapatite coatings. Surf Coat Technol. 2010;205:1892–6.

    Article  CAS  Google Scholar 

  9. Liu JK, Yang XH, Tian XG. Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technol. 2008;184:21–4.

    Article  CAS  Google Scholar 

  10. Simon V, Albon C, Simon S. Silver release from hydroxyapatite self-assembling calcium–phosphate glasses. J Non-Cryst Solids. 2008;354:1751–5.

    Article  CAS  Google Scholar 

  11. Singh B, Dubey AK, Kumar S, Saha N, Basu B, Gupta R. In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng C. 2011;31:1320–9.

    Article  CAS  Google Scholar 

  12. Sygnatowicz M, Keyshar K, Tiwari A. Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. J Mater. 2010;62(7):65–70.

    CAS  Google Scholar 

  13. Wasoontararat K, Suvannapruk W, Suwanprateeb J. Effect of layer thickness on the phosphorization of 3DP gypsum based monolith. Adv Mater Res. 2010;93–94:63–6.

    Article  Google Scholar 

  14. Suwanprateeb J, Suvannapruk W, Wasoontararat K. Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. J Mater Sci: Mater Med. 2010;21(2):419–29.

    Article  CAS  Google Scholar 

  15. Díaz M, Barba F, Miranda M, Guitián F, Torrecillas R, Moya JS. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater. 2009;2009:1–6.

    Article  Google Scholar 

  16. Suwanprateeb J, Thammarakcharoen F, Wasoontararat K, Suvannapruk W. Influence of printing parameters on the transformation efficiency of 3D-printed plaster of paris to calcium phosphate and its properties. Rapid Prototyping J. 2012;18(6).

  17. Dorozhkin SV. Calcium orthophosphate. J Mater Sci. 2007;42(4):1061–95.

    Article  CAS  Google Scholar 

  18. Thomas M, Ghosh SK, George KC. Characterisation of nanostructured silver orthophosphate. Mater Lett. 2002;56:386–92.

    Article  CAS  Google Scholar 

  19. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their microbial activities. Adv Colloid Interface Sci. 2009;145:83–96.

    Article  CAS  Google Scholar 

  20. Zhang X, Gubbels GHM, Terpstra RA, Metselaar R. Toughening of calcium hydroxyapatite with silver particles. J Mater Sci. 1997;32:235–43.

    Article  CAS  Google Scholar 

  21. Chaki TK, Wang PE. Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering. J Mater Sci: Mater Med. 1994;5:533–42.

    Article  CAS  Google Scholar 

  22. Hidalgo E, Dominguez C. Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett. 1998;98:169–79.

    Article  CAS  Google Scholar 

  23. Miranda M, Fernández A, Díaz M, Esteban-Tejeda L, López-Esteban S, Malpartida F, Torrecillas R, Moya JS. Silver-hydroxyapatite nanocomposites as bactericide and fungicide materials. Int J Mater Res. 2010;1:122–7.

    Article  Google Scholar 

  24. Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci: Mater Med. 2008;19:3603–9.

    Article  CAS  Google Scholar 

  25. Rameshbabu N, Sampath Kumar TS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP. Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res. 2007;80A:581–91.

    Article  CAS  Google Scholar 

  26. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.

    Article  CAS  Google Scholar 

  27. Ando Y, Miyamoto H, Noda I, Sakurai N, Akiyama T, Yonekura Y, Shimazaki T, Miyazaki M, Mawatari M, Hotokebuchi T. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater Sci Eng C. 2010;30:175–80.

    Article  CAS  Google Scholar 

  28. Yonekura Y, Miyamoto H, Shimazaki T, Ando Y, Noda I, Mawatari M, Hotokebuchi T. Osteoconductivity of thermal-sprayed silver-containing hydroxyapatite coating in the rat tibia. J Bone Joint Surg Br. 2011;93(5):644–9.

    Article  CAS  Google Scholar 

  29. Oh KS, Kim KJ, Jeong YK, Park EK, Kim SY, Kwon JH, Ryoo HM, Shin HI. Cytotoxicity and antimicrobial effect of Ag doped hydroxyapatite. Key Eng Mater. 2004;264–268:2107–10.

    Article  Google Scholar 

Download references

Acknowledgments

Lafarge Prestia Co., Ltd, Thailand is thanked for the supply of calcium sulfate and Thaiwah Co., Ltd, Thailand for the supply of pre-gelatinized starch. Cluster and Program Management Office, National Science and Technology Development Agency is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Suwanprateeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwanprateeb, J., Thammarakcharoen, F., Wasoontararat, K. et al. Single step preparation of nanosilver loaded calcium phosphate by low temperature co-conversion process. J Mater Sci: Mater Med 23, 2091–2100 (2012). https://doi.org/10.1007/s10856-012-4690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4690-7

Keywords

Navigation