Skip to main content

Advertisement

Log in

Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Craig RG, Gehring PE, Peyton FA. Relation of structure to the microhardness of human dentin. J Dent Res. 1959;38:624–30.

    Article  CAS  Google Scholar 

  2. Bowen RL, Rodriguez MM. Tensile and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc. 1962;64:378–87.

    CAS  Google Scholar 

  3. Sakamoto M, Kobayashi K, Hasegawa H, Kuroe T, Sakai J, Koda F, Tanabe Y, Itoh H, Ohta N. Root fracture and mechanical properties of root dentin. Proc. of JSME 2004 annual conference on experimental mechanics. 2004;4–2:28–30.

  4. Lyons K. Aetiology of abfraction lesions. N Z Dent J. 2001;97:93–8.

    CAS  Google Scholar 

  5. Marshall GW Jr, Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res. 2000;54:87–95.

    Article  Google Scholar 

  6. Park S, Wang DH, Zhang D, Romberg E, Arola D. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med. 2008;19:2317–24.

    Article  CAS  Google Scholar 

  7. Johnsen DV. Comparison of primary and permanent teeth. In: Avery JK, editor. Oral development and histology. 3rd ed. New York: Thiema Medical Pub; 2002. p. 213–24.

    Google Scholar 

  8. Padmanabhan SK, Balakrishnan A, Chu MC, Kim TN, Cho SJ. Micro-indentation fracture behavior of human enamel. Dent Mater. 2010;26:100–4.

    Article  Google Scholar 

  9. Evans AG, Wilshaw TR. Quasi-static solid particle damage in brittle solid-I. Observations, analysis and implications. Acta Metall. 1976;24:939–56.

    Article  CAS  Google Scholar 

  10. Palmqvist S. Rissbildungsarbeit bei Vickers-Eindrücken als Maß für die Zähigkeit von Hartmetallen. Archiv für Eisenhüttenwesen. 1962;33:629–34.

    Google Scholar 

  11. Evans AG, Charles EA. Fracture toughness determinations by indentation. J Am Ceram Soc. 1976;59:371–2.

    Article  CAS  Google Scholar 

  12. Niihara K. Indentation microfracture of ceremics—its application and problems. Ceram Jpn. 1985;20:12–8.

    Google Scholar 

  13. Hassan R, Caputo AA, Bunshah RF. Fracture toughness of human enamel. J Dent Res. 1981;60:820–7.

    Article  CAS  Google Scholar 

  14. Lewis MH, Fung R, Taplin DMR. Indentation plasticity and fracture Si3N4 ceramic alloys. J Mater Sci. 1981;16:3437–46.

    Article  CAS  Google Scholar 

  15. Nakamichi I. Adhesion of various dental restorative materials to human and bovine teeth (Supplement). J J Dent Mater. 1984;3:85–94.

    Article  CAS  Google Scholar 

  16. Sakai J, Kouda F, Sakamoto M, Kobayashi K, Maruyama Y, Itoh H, Hara T. Evaluation of microhardness of permanent and primary tooth. Jpn J Clin Biomech. 2003;24:133–7.

    Google Scholar 

  17. Hayashi-Sakai S, Sakai J, Sakamoto M, Kouda F, Noda T. The gradient microhardness in cross-sectioned sound primary molars. J Jpn Soc Exp Mech. 2006;6:13–8.

    Google Scholar 

  18. Meckel AH, Griebstein WJ, Neal RJ. Structure of mature human dental enamel as observed by electron microscopy. Arch Oral Biol. 1965;10:775–83.

    Article  CAS  Google Scholar 

  19. Nanci A. Enamel: comparison, formation, and structure. In: Nanci A, editor. Ten Cate’s oral histology: development, structure, and function. 6th ed. Saint Louis: Mosby; 2003. p. 145–91.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. E. Tanner, School of Engineering Materials, Glasgow University, for her kind suggestions with respect to the format of this text. This study was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 22592279) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Hayashi-Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi-Sakai, S., Sakai, J., Sakamoto, M. et al. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method. J Mater Sci: Mater Med 23, 2047–2054 (2012). https://doi.org/10.1007/s10856-012-4678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4678-3

Keywords

Navigation