Skip to main content

Advertisement

Log in

The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and β-TCP scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Platelet-derived growth factor-BB (PDGF-BB) plays important roles in regenerating damaged tissue. In this study we investigated the effects of a tissue-engineered bone combined with recombinant human PDGF-BB (rhPDGF-BB), bone marrow stem cells (BMSCs) and β–tricalcium phosphate (β-TCP) to repair critical-size calvarial bone defects in rat. Proliferation and osteogenic differentiation of BMSCs treated with different concentration rhPDGF-BB (0, 10, and 50 ng/ml) was evaluated by MTT, alkaline phosphatase (ALP) activity, alizarin red staining and real-time quantitative PCR (RT-qPCR) analysis of osteogenic gene. BMSCs were then combined with rhPDGF-BB-loaded β-TCP and transplanted into 5 mm calvarial bone defects. The new bone formation and mineralization was evaluated by micro-computerized tomography (Micro-CT) and histological analysis at week 8 after operation. It was observed that the proliferation of BMSCs treated with rhPDGF-BB was enhanced with a time- and dose- dependent manner. There were increased ALP activity, mineralized deposition and elevated mRNA levels of osteogenic gene for BMSCs treated with rhPDGF-BB, particularly in the 50 ng/ml group. Histological analysis showed new bone formation and mineralization in the rhPDGF-BB/BMSCs/β-TCP group was significantly higher than BMSCs/β-TCP, rhPDGF-BB/β-TCP, and β-TCP alone group (P < 0.05). In conclusion, rhPDGF-BB/BMSCs/β-TCP is a promising tissue-engineered bone for craniofacial bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alam MI, Asahina I, Seto I, Oda M, Enomoto S. Prefabricated vascularized bone flap: a tissue transformation technique for bone reconstruction. Plast Reconstr Surg. 2001;108(4):952–8.

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6. doi:10.1126/science.8493529.

    Article  CAS  Google Scholar 

  3. Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludağ H, et al. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A. 2011;17(9–10):1313–25. doi:10.1089/ten.tea.2010.0490.

    Article  CAS  Google Scholar 

  4. Uckan S, Deniz K, Dayangac E, Araz K, Ozdemir BH. Early implant survival in posterior maxilla with or without be-ta-Tricalcium phosphate sinus floor graft. J Oral Maxillofac Surg. 2010;68(7):1642–5. doi:10.1016/j.joms.2009.08.028.

    Article  Google Scholar 

  5. Fujita R, Yokoyama A, Kawasaki T, Kohqo T. Bone augmentation osteogenesis using hydroxyapatite and beta tricalcium phosphate blocks. J Oral Maxillofac Surg. 2003;61(9):1045–53. doi:10.1016/S0278-2391(03)00317-3.

    Article  Google Scholar 

  6. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2- modified bMSCs. Biomaterials. 2009;30(27):4522–32. doi:10.1016/j.biomaterials.2009.05.021.

    Article  CAS  Google Scholar 

  7. Yanoso-Scholl L, Jacobson JA, Bradica G, Lerner AL, O’Keefe RJ, Schwarz EM, et al. Evaluation of dense polylactic acid / beta-tricalcium phosphate scaffolds for bone tissue engineering. J Biomed Mater Res A. 2010;95(3):717–26. doi:10.1002/jbm.a.32868.

    Google Scholar 

  8. Suba Z, Takacs D, Gyulai-Gaal S, Kovacs K. Facilitation of β-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs. Int J Oral Maxillofac Implants. 2004;19(6):832–8.

    Google Scholar 

  9. Jung RE, Thoma DS, Hammerle CH. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. J Clin Periodontol. 2008;35(8 Suppl):255–81. doi:10.1111/j.1600-051X.2008.01270.x.

    Article  CAS  Google Scholar 

  10. Yazawa M, Ogata H, Kimura A, Nakajima T, Mori T, Watanabe N. Basic studies on the bone formation ability by platelet rich plasma in rabbits. J Craniofac Surg. 2004;15(3):439–46.

    Article  Google Scholar 

  11. Kaplan DR, Chao F, Stiles CD, Antoniades HN, Scher CD. Platelet alpha granules contain a growth factor for fibroblasts. Blood. 1979;53(6):1043–52.

    CAS  Google Scholar 

  12. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol. 1982;92(2):584–8.

    Article  CAS  Google Scholar 

  13. Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol. 2003;74(9):1282–92. doi:10.1902/jop.2003.74.9.1282.

    Article  CAS  Google Scholar 

  14. Lin Z, Sugai JV, Jin Q, Chandler LA, Giannobile WV. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res. 2008;43(4):440–9. doi:10.1111/j.1600-0765.2008.01089.x.

    Article  CAS  Google Scholar 

  15. DiGiovanni CW. PetricekJM. The evolution of rhPDGF-BB in musculoskeletal repair and its role in foot and ankle fusion surgery. Foot Ankle Clin. 2010;15(4):621–40. doi:10.1016/j.fcl.2010.07.001.

    Article  Google Scholar 

  16. McAllister BS, Haghighat K, Prasad HS, Rohrer MD. Histologic evaluation of recombinant human platelet-derived growth factor-BB after use in extraction socket defects: a case series. Int J Periodontics Restorative Dent. 2010;30(4):365–73.

    Google Scholar 

  17. Urban I, Caplanis N, Lozada JL. Simultaneous vertical guided bone regeneration and guided tissue regeneration in the posterior maxilla using recombinant human platelet-derived growth factor: a case report. J Oral Implantol. 2009;35(5):251–6. doi:10.1563/AAID-JOI-D-09-00004.1.

    Article  Google Scholar 

  18. Al-Zube L, Breitbart EA, O’Connor JP, Parsons JR, Bradica G, Hart CE, Lin SS. Recombinant human platelet-derived growth factor BB (rhPDGF-BB) and beta-tricalcium phosphate/collagen matrix enhance fracture healing in a diabetic rat model. J Orthop Res. 2009;27(8):1074–81. doi:10.1002/jor.20842.

    Article  CAS  Google Scholar 

  19. Kwon HR, Wikesjö UM, Park JC, Kim YT, Bastone P, Pippig SD, Kim CK. Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs. J Clin Periodontal. 2010;37(8):739–46. doi:10.1111/j.1600-051X.2010.01576.x.

    CAS  Google Scholar 

  20. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254(2):317–30.

    Article  CAS  Google Scholar 

  21. Sun XJ, Zhang ZY, Wang SY, Gittens SA, Jiang XQ, Chou LL. Maxillary sinus floor elevation using a tissue-engineered bone complex with osteobone and bMSCs in rabbits. Cling Oral Implants Res. 2008;19(8):804–13. doi:10.1111/j.1600-0501.2008.01577.x.

    Article  Google Scholar 

  22. Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27(33):5651–7. doi:10.1016/j.biomaterials.2006.07.027.

    Article  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  24. Bateman J, Intini G, Margarone J, Goodloe S, Bush P, Lynch SE, Dziak R. Platelet-derived growth factor enhancement of two alloplastic bone matrices. J Periodontol. 2005;76(11):1833–41. doi:10.1902/jop.2005.76.11.1833.

    Article  CAS  Google Scholar 

  25. Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A. 2009;15(4):877–85. doi:10.1089/ten.tea.2008.0018.

    Article  CAS  Google Scholar 

  26. Wang S, Zhang Z, Xia L, Zhao J, Sun X. Systematic evaluation of a tissue- engineered bone for maxillary sinus augmentation in large animal canine model. Bone. 2010;46(1):91–100. doi:10.1016/j.bone.2009.09.008.

    Article  CAS  Google Scholar 

  27. Komlev VS, Mastrogiacomo M, Pereira RC, Peyrin F, Rustichelli F, Cancedda R. Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomography. European Cells and Materials. 2010;29(19):136–46.

    Google Scholar 

  28. Garcia CAM, Ales BF, Roman CM. Spectrofluorimetric determination of boron in soils, plants and natural waters with Alizarin Red S. Analyst. 1992;117(7):1189–91.

    Article  Google Scholar 

  29. Xia L, Xu Y, Wei J, Zeng D, Ye D, Liu C, Zhang Z, Jiang X. Maxillary Sinus Floor Elevation Using a Tissue-Engineered Bone with rhBMP-2-Loaded Porous Calcium Phosphate Cement Scaffold and Bone Marrow Stromal Cells in Rabbits. Cells Tissues Organs. 2011;194(6):481–93. doi:10.1159/000323918.

    Article  CAS  Google Scholar 

  30. Ng MH, Aminuddin BS, Tan KK, Tan GH, SabarulAfian M, Ruszymah BH. The use of bone marrow stem cells for bone tissue engineering. Med J Malaysia. 2004;59(Suppl B):41–2.

    Google Scholar 

  31. Vikjaer D, Blom S, Hjorting-Hansen E, Pinholt EM. Effect of plateletderived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits. European Journal Oral Sciences. 1997;105(1):59–66.

    Article  CAS  Google Scholar 

  32. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22(1):81–91. doi:org/10.1016/S0945-053X(03)00012-X.

    Article  CAS  Google Scholar 

  33. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, et al. Adipose derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22(5):560–7. doi:10.1038/nbt958.

    Article  CAS  Google Scholar 

  34. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364(9436):766–70. doi:10.1016/S0140-6736(04)16935-3.

    Article  CAS  Google Scholar 

  35. Liang L, Rulis P, Ching WY. Mechanical properties, electronic structure and bonding of alpha- and beta-tricalcium phosphates with surface characterization. Acta Biomater. 2010;6(9):3763–71. doi:10.1016/j.actbio.2010.03.033.

    Article  CAS  Google Scholar 

  36. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121(2):317–24.

    CAS  Google Scholar 

  37. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000;21(12):1291–8. doi:10.1016/S0142-9612(00)00030-2.

    Article  CAS  Google Scholar 

  38. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355 Suppl:S7–21.

    Article  Google Scholar 

  39. Cenni E, Ciapetti G, Granchi D, Fotia C, Perut F, Giunti A. Baldini. Endothelial cells incubated with platelet-rich plasma express PDGF-B and ICAM-1 and induce bone marrow stromal cell migration. J Orthop Res. 2009;27(11):1493–8. doi:10.1002/jor.20896.

    Article  CAS  Google Scholar 

  40. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T. Synthetic vascular prosthesis impregnated with genetically modified bone marrow cells produced recombinant proteins. Artif Organs. 2005;29(10):815–9. doi:10.1111/j.1525-1594.2005.00134.x.

    Article  CAS  Google Scholar 

  41. Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG. Repair of craniotomy defects using bone marrow stromal cells. Transplantation. 1998;66(10):1272–8.

    Article  CAS  Google Scholar 

  42. Lu J, Descamps M. DejouJ, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63(4):408–12.

    Article  CAS  Google Scholar 

  43. Yuan H, De Bruijn JD, Li Y, Feng J, Yang Z, De Groot K, Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J Mater Sci Mater Med. 2001;12(1):7–13. doi:10.1023/A:1026792615665.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: National Natural Science Foundation of China 30772431, 30772434, 30973342; Program for New Century Excellent Talents in University NCET-08-0353, Science and Technology Commission of Shanghai Municipality 0952nm04000, 10430710900, 10dz2211600; Shanghai Education Committee T0203, 07SG19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinquan Jiang or Fuqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Lv, K., Zhang, W. et al. The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and β-TCP scaffolds. J Mater Sci: Mater Med 23, 1073–1084 (2012). https://doi.org/10.1007/s10856-012-4558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4558-x

Keywords

Navigation