Skip to main content

Advertisement

Log in

Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Discs of biocompatible glass ionomer cements were prepared for Hertzian indentation and subsequent fracture analyses. Specifically, 2 × 10 mm samples for reproducing bottom-initiated radial fracture, complemented by 0.2 × 1 mm samples for optimal resolution with X-ray micro tomography (μCT), maintaining dimensional ratio. The latter allowed for accurate determination of volumetric-porosity of the fully cured material, fracture-branching through three Cartesian axes and incomplete bottom-initiated cracking. Nanocomputed tomography analyses supported the reliability of the μCT results. Complementary 2-dimensional fractographic investigation was carried out by optical and scanning electron microscopies on the larger samples, identifying fracture characteristics. The combined 3-D qualitative assessment of microstructure and fractures, complemented by 2-D methods, provided an increased understanding of the mechanism of mechanical failure in these cements. Specifically, cracks grew to link pores while propagating along glass-matrix interfaces. The methodological development herein is exploitable on related biomaterials and represents a new tool for the rational characterisation, optimisation and design of novel materials for clinical service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Crisp S, Wilson AD. Reactions in glass ionomer cements: I. Decomposition of the powder. J Dent Res. 1974;53:1408–13. doi:10.1177/00220345740530061901.

    Article  CAS  Google Scholar 

  2. Mount GJ. Color Atlas of Glass Ionomer Cements. 3rd ed. London: Dunitz; 2002.

    Google Scholar 

  3. Nicholson JW. Glass ionomer dental cements: update. Mater Tech Adv Perf Mater. 2010;25:8–13. doi:10.1179/175355509X12614966220506.

    CAS  Google Scholar 

  4. Jonck LM, Grobbelaar CJ, Strating H. Biological evaluation of glass-ionomer cement (Ketac-O) as an interface material in total joint replacement: a screening test. Clin Mater. 1989;4:201–24. doi:10.1016/0267-6605(89)90030-9.

    Article  Google Scholar 

  5. Brook IM, Hatton PV. Glass-ionomers: bioactive implant materials. Biomater. 1998;19:565–71. doi:10.1016/S0142-9612(98)00138-0.

    Article  CAS  Google Scholar 

  6. Bauer M, Pytel J, Vona I, Gerlinger I. Combination of ionomer cement and bone graft for ossicular reconstruction. Eur Arch Otorhinolaryngology. 2007;264:1267–73. doi:10.1007/s00405-007-0367-0.

    Article  Google Scholar 

  7. Hehl K, Schumann K, Beck C, Schottle W. Middle-ear surgery–glass ionomer cement at the incudostapedial joint. Laryngorhinootologie. 1989;68:490–2. doi:10.1055/s-2007-998383.

    Article  CAS  Google Scholar 

  8. Dicks F, Zollner W. Practicability of glass ionomer cement for veterinary dental practice. Praktische Tierarzt. 1988;69:32–6.

    Google Scholar 

  9. Vujaskovic M, Karadzic B, Bacetic D. Histopathology of subcutaneous tissue reaction to endodontic root canal sealers. Acta Veterinaria (Beograd). 2011;61:327–36. doi:10.2298/AVB1103327V.

    Article  Google Scholar 

  10. Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14(sp. issue):3–9. doi:10.1590/S1678-77572006000700002.

    Google Scholar 

  11. Ten Cate JM, van Duinen RNB. Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. J Dent Res. 1995;74:1266–71. doi:10.1177/00220345950740060501.

    Article  CAS  Google Scholar 

  12. Hotz P, McLean JW, Sced I, Wilson AD. The bonding of glass-ionomer cements to metal and tooth substrates. Brit Dent J. 1977;142:41–7. doi:10.1038/sj.bdj.4803864.

    Article  CAS  Google Scholar 

  13. Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.

    Article  CAS  Google Scholar 

  14. McLean JW, Wilson AD. The clinical development of the glass-ionomer cements. I. Formulations and properties. Aus Dent J. 1977;22:31–6. doi:10.1111/j.1834-7819.1977.tb04441.x.

    Article  CAS  Google Scholar 

  15. McCabe JF, Yan ZQ, Al Naimi OT, Mahmoud G, Rolland SL. Smart materials in dentistry–future prospects. Dent Mater J. 2009;28:37–43. doi:10.4012/dmj.28.37.

    Article  Google Scholar 

  16. McLean JW, Wilson AD. The clinical development of the glass-ionomer cement. II. Some clinical applications. Aus Dent J. 1977;22:120–7. doi:10.1111/j.1834-7819.1977.tb04463.x.

    Article  CAS  Google Scholar 

  17. Lloyd CH, Mitchell L. The fracture toughness of tooth coloured restorative materials. J Oral Rehabil. 1984;11:257–72. doi:10.1111/j.1365-2842.1984.tb00575.x.

    Article  CAS  Google Scholar 

  18. Crisp S, Pringuer MA, Wardleworth D, Wilson AD. Reactions in glass-ionomer cements: II An infrared spectroscopic study. J Dent Res. 1974;53:1414–9. doi:10.1177/00220345740530062001.

    Article  CAS  Google Scholar 

  19. Crisp S, Wilson AD. Reactions in glass-ionomer cements: III. The precipitation reaction. J Dent Res. 1974;53:1420–4. doi:10.1177/00220345740530062101.

    Article  CAS  Google Scholar 

  20. Wasson EA, Nicholson JW. New aspects of the setting of glass-ionomer cements. J Dent Res. 1993;72:481–3. doi:10.1177/00220345930720020201.

    Article  CAS  Google Scholar 

  21. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomater. 1998;19:485–94. doi:10.1016/S0142-9612(97)00128-2.

    Article  CAS  Google Scholar 

  22. Stamboulis A, Law RV, Hill RG. Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomater. 2004;25:3907–13. doi:10.1016/j.biomaterials.2003.10.074.

    Article  CAS  Google Scholar 

  23. Culbertson BM. New polymeric materials for use in glass-ionomer cements. J Dent. 2006;34:556–65. doi:10.1016/j.jdent.2005.08.008.

    Article  CAS  Google Scholar 

  24. Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999;81:652–61. doi:10.1016/S0022-3913(99)70103-4.

    Article  CAS  Google Scholar 

  25. Wang Y, Darvell BW. Failure mode of dental restorative materials under Hertzian indentation. Dent Mater. 2007;23:1236–44. doi:10.1016/j.dental.2006.11.016.

    Article  CAS  Google Scholar 

  26. Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 3. Effect of polyacid concentration on the physical properties. J Dent. 1977;5:51–6. doi:10.1016/S0300-5712(77)80025-0.

    Article  CAS  Google Scholar 

  27. Hill RG, Wilson AD, Warrens CP. The influence of poly (acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements. J Mater Sci. 1989;24:363–71. doi:10.1007/BF00660982.

    Article  CAS  Google Scholar 

  28. Kajiwara M. Formation and compressive strength of the ionomer cements prepared from aluminosilicate glass and poly (acrylic acid). J Mater Sci Lett. 1984;3:617–9. doi:10.1007/BF00719627.

    Article  CAS  Google Scholar 

  29. Quinn JB, Quinn GD. Material properties and fractography of an indirect dental resin composite. Dent Mater. 2010;26:589–99. doi:10.1016/j.dental.2010.02.008.

    Article  CAS  Google Scholar 

  30. Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (K IC) of a dental porcelain determined by fractographic analysis. Dent Mater. 1999;15:342–8. doi:10.1016/S0109-5641(99)00055-X.

    Article  CAS  Google Scholar 

  31. Landis EN, Nagy EN, Keane DT. Microstructure and fracture in three dimensions. Eng Fract Mech. 2003;70:911–25. doi:10.1016/S0013-7944(02)00157-1.

    Article  Google Scholar 

  32. Sinnett-Jones PE, Browne M, Ludwig W, Buffiere JY, Sinclair I. Microtomography assessment of failure in acrylic bone cement. Biomater. 2005;26:6460–6. doi:10.1016/j.biomaterials.2005.04.064.

    Article  CAS  Google Scholar 

  33. Wang Y, Darvell BW. Interactive effect of indenter size and sample thickness in Hertzian indentation test. Dent Mater. 2010;26:539–44. doi:10.1016/j.dental.2010.02.001.

    Article  Google Scholar 

  34. Bontaz-Carion J, Pellegrini YP. X-ray microtomography analysis of dynamic damage in tantalum. Adv Eng Mater. 2006;8:480–6. doi:10.1002/adem.200600058.

    Article  Google Scholar 

  35. Nomoto R, Komoriyama M, McCabe JF, Hirano S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater. 2004;20:972–8. doi:10.1016/j.dental.2004.03.001.

    Article  CAS  Google Scholar 

  36. Deb S, Shah P, Vazquez B, San Roman J. A novel acrylic copolymer for a poly(alkenoate) glass-ionomer cement. J Mater Sci Mater Med. 2003;14:575–81. doi:10.1023/A:1024062705439.

    Article  CAS  Google Scholar 

  37. Landis E, Keane DT. X-ray microtomography for fracture studies in cement-based materials. Development in X-ray Tomography II. Bonse (Ed.). Bellingham, WA. SPIE; 1999. SPIE Proc Vol 3772:105-113. Cited by Stock SR, Microcomputed tomography: methodology and applications. Boca Raton: CRC press; 2008.

  38. Goldman M. Fracture properties of composite and glass ionomer dental restorative materials. J Biomed Mater Res. 1985;19:771–83. doi:10.1002/jbm.820190705.

    Article  CAS  Google Scholar 

  39. Hull D. Fractography: Observing, measuring and interpreting fracture surface topography. Cambridge: University Press; 1999. p. 121–9.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants ETT-489/2009 and TAMOP-4.2.1.B of Hungary as well as TET-SIN-CELLTHER grant supported by NKTH-A*STAR. The authors thank Professor Brian W. Darvell for initiating this project, Ms. Elke Van de Casteele from SkyScan for her help with nano CT imaging and Miss Tóbiás Edit, Mr. Szabó Bence and Gimesi Brigitte for help with sample preparation. Technical University Materials laboratory staff Mark and Peter are gratefully acknowledged for technical support and discussion. GC Corporation (Japan) is also acknowledged for donation of the materials tested. KVT, GAC, IGC thank GIOCOMMS (Toronto/Budapest/Beijing) for supporting international researcher and student exchanges, in addition to the Centre for Advanced Functional Materials (CAFMaD) through the Higher Educational Funding Council for Wales (HEFCW) for personal support 2006-2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Dobó-Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, K.V., Nagy, P.M., Chass, G.A. et al. Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. J Mater Sci: Mater Med 23, 677–685 (2012). https://doi.org/10.1007/s10856-012-4553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4553-2

Keywords

Navigation