Skip to main content
Log in

Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nerve tissue engineering is one of the most promising methods in nerve tissue regeneration. The development of blended collagen and glycosaminoglycan scaffolds can potentially be used in many soft tissue engineering applications. In this study an attempt was made to develop two types of random and aligned electrospun, nanofibrous scaffold using collagen and a common type of glycosaminoglycan. Ion chromatography test, MTT and attachment assays were conducted respectively to trace the release of glycosaminoglycan, and to investigate the biocompatibility of the scaffold. Cell cultural tests showed that the scaffold acted as a positive factor to support connective tissue cell outgrowth. The positive effect of fiber orientation on cell outgrowth organization was traced through SEM images. Porosity percentage calculation and tensile strength measurement of the webs specified analogous properties to the native neural matrix tissue. These results suggested that nanostructured porous collagen-glycosaminoglycan scaffold is a potential cell carrier in nerve tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Chart 1
Chart 2
Chart 3

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  2. Shaoping Z, Wee ET, Xiao Z, Beuerman RW, Seeram R, Lin Yue LY. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A. 2006;79(3):456–63.

    Google Scholar 

  3. Shaoping Z, Wee ET, Xiao Z, Roger B, Seeram R, Lin Yue LY. Formation of collagen–glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules. 2005;6:2998–3004.

    Article  Google Scholar 

  4. Shaoping Z, Wee ET, Xiao Z, Roger B, Seeram R, Lin Yue LY. Development of a novel collagen–GAG nanofibrous scaffold via electrospinning. Mater Sci Eng. 2007;27(C):262–6.

    Google Scholar 

  5. Fratzl P. Collagen: structure and mechanics. New York: Springer; 2008.

    Google Scholar 

  6. Moghe AK. Core-sheath differentially biodegradable nanofiber structures for tissue engineering. A Dissertation submitted to the Graduate Faculty of North Carolina State University, Raleigh; 2008.

  7. Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005;1:115–23.

    Article  Google Scholar 

  8. Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J Biomed Mater Res. 2004;69(A):314–22.

    Article  Google Scholar 

  9. Vance RJ, Miller DC, Thapa A, Habersroth KM, Webster TJ. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane and polycaprolactone. Biomaterials. 2004;25:2095–103.

    Article  CAS  Google Scholar 

  10. Mei-Chin C, Hsiang-Fa L, Ya-Ling C, Yen C, Hao-Ji W, Hsing-Wen S. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release. 2005;108:178–89.

    Article  Google Scholar 

  11. Bai-Shuan L, Chun-Hsu Y, Shan-Hui H. A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J Biomater Appl. 2004;19:21–34.

    Article  Google Scholar 

  12. Yueh-Sheng C, Ju-Ying C, Chun-Yuan C, Fuu-Jen T, Chun-Hsu Y, Bai-Shuan L. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26:3911–8.

    Article  Google Scholar 

  13. Sung H-W, Liang H-C. Acellular biological material chemically treated with genipin. United States Patent 6,545,042, 2003.

  14. Gee AO, Baker BM, Mauck RL. Mechanics and cytocompatibily of genipin crosslinked type I collagen nanofibrous scaffolds. Summer Bioengineering Conference (SBC2008), 25–29 Jun, Marriott Resort, Marco Island, USA.

  15. Lien S-M, Li W-T, Huang T-J. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng. 2008;28(C):36–43.

    CAS  Google Scholar 

  16. Sundararaghavan HG, Monteiro GA, Lapin NA, Chabal YJ, Miksan JR, Shreiber DI. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. J Biomed Mater Res A. 2008;87(2):308–20.

    Google Scholar 

  17. Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng. 2009;102:632–43.

    Article  CAS  Google Scholar 

  18. Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/collagen blends as bone tissue scaffolds. Polymer. 2009;50:3778–85.

    Article  CAS  Google Scholar 

  19. Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27:3136–46.

    Article  CAS  Google Scholar 

  20. Adams JC. Methods in cell biology: methods in cell–matrix adhesion. San Diego: Elsevier Science; 2002.

    Google Scholar 

  21. Dumont CE, Walter B. Stimulation of neurite outgrowth in a human nerve scaffold designed for peripheral nerve reconstruction. J Biomed Mater Res B. 2005;37B(1):194–202.

    Google Scholar 

  22. Mollers S, Heschel I, Olde Damink L, Schugner F, Deumens R, Muller B, Bozkurt A, Gerardo Nava J, Noth J, Brook G. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng A. 2009;15:461–72.

    Article  Google Scholar 

  23. Kenawy E, Layman J, Watkins J, Bowlin G, Matthews J, Simpson D, Wnek G. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials. 2003;24:907–13.

    Article  CAS  Google Scholar 

  24. Shenoy S, Bates W, Frisch H, Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer polymer interaction limit. Polymer. 2005;46:3372–84.

    Article  CAS  Google Scholar 

  25. Koski A, Tim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58:493–7.

    Article  CAS  Google Scholar 

  26. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J. 2005;41:409–21.

    Article  CAS  Google Scholar 

  27. Shin Y, Hohman M, Brenner M, Rutledge G. Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett. 2001;78:1149–51.

    Article  CAS  Google Scholar 

  28. Deitzel J, Kleinmeyer J, Harris D, Beck Tan N. The effect of processing variables on the morphology of elecrospun nanofibers and textiles. Polymer. 2001;42:261–72.

    Article  CAS  Google Scholar 

  29. Yarin A, Koombhongse S, Reneker D. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001;89:3018–26.

    Article  CAS  Google Scholar 

  30. Hohman M, Shin Y, Rutledge G, Brenner M. Electrospinning, electrically forced jets. II. Applications. Phys Fluids. 2001;13:2221–36.

    Article  CAS  Google Scholar 

  31. Reneker D, Yarin A, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shokrgozar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timnak, A., Yousefi Gharebaghi, F., Pajoum Shariati, R. et al. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J Mater Sci: Mater Med 22, 1555–1567 (2011). https://doi.org/10.1007/s10856-011-4316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4316-5

Keywords

Navigation