Skip to main content

Advertisement

Log in

Immobilization of RGD peptide on HA coating through a chemical bonding approach

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, Arg-Gly-Asp (RGD) sequence containing peptide was immobilized on hydroxyapatite (HA) coatings through a chemical bonding approach in two steps, surface modification with 3-aminopropyltriethoxysilane (APTES) and RGD immobilization. The results indicate that RGD has been successfully immobilized on HA coatings. Comparing with physical adsorption coatings, the chemically bonded RGD on the coatings shows much better anti-wash-out ability. Since RGD is able to recognize cell-membrane integrins on biointerfaces, the present method will be an effective way to favor interaction of cells with HA coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  2. Porter AE, Hobbs LW, Rosen VB, Spector M. The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding. Biomaterials. 2002;23:725–33.

    Article  CAS  PubMed  Google Scholar 

  3. Chang CK, Wu JS, Mao DL, Ding CX. Mechanical and histological evaluation of hydroxyapatite-coated and noncoated Ti6Al4V implants in tibia bone. J Biomed Mater Res. 2001;56:17–23.

    Article  CAS  PubMed  Google Scholar 

  4. Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL. Biomaterials. 2005;26:7046–56.

    Article  CAS  PubMed  Google Scholar 

  5. Bagno A, Piovan A, Dettin M, Chiarion A, Brun P, Gambaretto R, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone. 2007;40:693–9.

    Article  CAS  PubMed  Google Scholar 

  6. McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007;78:377–96.

    Article  PubMed  Google Scholar 

  7. Le GL, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  CAS  Google Scholar 

  8. Nuttelman CR, Mortisen DJ, Henry SM, Anseth KS. Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res. 2001;57:217–23.

    Article  CAS  PubMed  Google Scholar 

  9. Bhati RS, Mukherjee DP, McCarthy KJ, Rogers SH, Smith DF, Shalaby SW. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J Biomed Mater Res. 2001;56:74–82.

    Article  CAS  PubMed  Google Scholar 

  10. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  CAS  PubMed  Google Scholar 

  11. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  PubMed  Google Scholar 

  12. Ruoslahti E. RGD and other recognition sequences for integrins. Ann Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  Google Scholar 

  13. Pierschbacher MD, Ruoslahiti E. Nature. 1984;309:30.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Shin H, Jo S, Mikos AG. Review: biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.

    Article  CAS  PubMed  Google Scholar 

  15. Castel S, Pagan R, Mitjans F, Piulats J, Goodman S, Jonczyk A. RGD peptides and monoclonal antibodies, antagonists of alpha-v-integrin, enter the cells by independent endocytic pathways. Laboratory investigation. Lab Invest. 2001;81:1615–26.

    CAS  PubMed  Google Scholar 

  16. Memmo LM, McKeown-Longo P. The alphavbeta5 integrin functions as an endocytic receptor for vitronectin. J Cell Sci. 1998;111:425–33.

    CAS  PubMed  Google Scholar 

  17. Garcia AJ, Keselowsky BG. Biomimetic surfaces for control of cell adhesion to facilitate bone formation. Crit Rev Eukaryot Gene Express. 2002;12:151–62.

    Article  CAS  Google Scholar 

  18. Weng WJ, Baptista JL. The preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method. J Am Ceram Soc. 1999;82:27–32.

    Article  CAS  Google Scholar 

  19. Karakecili AG, Demirtas TT, Satriano C, Gümüsderelioglu M, Marletta G. Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures. J Biosci Bioeng. 2007;104:69–77.

    Article  CAS  PubMed  Google Scholar 

  20. Mouanda B, Viel P, Blanche C. Thin Solid Films. 1998;323:42.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Heilongjiang Provincial Science Foundation (Grant for Young Scholars, No. QCO7C38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Cheng, K., Weng, W. et al. Immobilization of RGD peptide on HA coating through a chemical bonding approach. J Mater Sci: Mater Med 20, 2349–2352 (2009). https://doi.org/10.1007/s10856-009-3794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3794-1

Keywords

Navigation