Skip to main content

Advertisement

Log in

Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The possibility to fast-load biomimetic hydroxyapatite coatings on surgical implant with the antibiotics Amoxicillin, Gentamicin sulfate, Tobramycin and Cephalothin has been investigated in order to develop a multifunctional implant device offering sustained local anti-bacterial treatment and giving the surgeon the possibility to choose which antibiotics to incorporate in the implant at the site of surgery. Physical vapor deposition was used to coat titanium surfaces with an adhesion enhancing gradient layer of titanium oxide having an amorphous oxygen poor composition at the interface and a crystalline bioactive anatase TiO2 composition at the surface. Hydroxyapatite (HA) was biomimetically grown on the bioactive TiO2 to serve as a combined bone in-growth promoter and drug delivery vehicle. The coating was characterized using scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The antibiotics were loaded into the HA coatings via soaking and the subsequent release and antibacterial effect were analyzed using UV spectroscopy and examination of inhibition zones in a Staphylococcus aureus containing agar. It was found that a short drug loading time of 15 min ensured antibacterial effects after 24 h for all antibiotics under study. It was further found that the release processes of Cephalothin and Amoxicillin consisted of an initial rapid drug release that varied unpredictably in amount followed by a reproducible and sustained release process with a release rate independent of the drug loading times under study. Thus, implants that have been fast-loaded with drugs could be stored for ~10 min in a simulated body fluid after loading to ensure reproducibility in the subsequent release process. Calculated release rates and measurements of drug amounts remaining in the samples after 22 h of release indicated that a therapeutically relevant dose could be achieved close to the implant surface for about 2 days. Concluding, the present study provides an outline for the development of a fast-loading slow-release surgical implant kit where the implant and the drug are separated when delivered to the surgeon, thus constituting a flexible solution for the surgeon by offering the choice of quick addition of antibiotics to the implant coating based on the patient need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christenson EM, et al. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25:11–22. doi:10.1002/jor.20305.

    Article  PubMed  CAS  Google Scholar 

  2. Ratner BD, et al. Biomaterials science; an introduction to materials in medicine. 2nd ed. San Diego: Elsevier Academic Press; 2004.

    Google Scholar 

  3. Qiu Y, et al. Biomaterial strategies to reduce implant-associated infections. Int J Artif Organs. 2007;30:828–41.

    PubMed  CAS  Google Scholar 

  4. Ginebra MP, et al. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–10. doi:10.1016/j.jconrel.2006.04.007.

    Article  PubMed  CAS  Google Scholar 

  5. Teller M, et al. Release of gentamicin from bone regenerative materials: an in vitro study. J Biomed Mater Res B. 2007;81B:23–9. doi:10.1002/jbm.b.30631.

    Article  CAS  Google Scholar 

  6. Stigter M, et al. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials. 2002;23:4143–53. doi:10.1016/S0142-9612(02)00157-6.

    Article  PubMed  CAS  Google Scholar 

  7. Stigter M, et al. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release. 2004;99:127–37. doi:10.1016/j.jconrel.2004.06.011.

    Article  PubMed  CAS  Google Scholar 

  8. Vallet-Regi M, et al. Bioceramics and pharmaceuticals: a remarkable synergy. Solid State Sci. 2007;9:768–76. doi:10.1016/j.solidstatesciences.2007.03.026.

    Article  ADS  CAS  Google Scholar 

  9. Kalicke T, et al. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. J Orthop Res. 2006;24:1622–40. doi:10.1002/jor.20193.

    Article  PubMed  Google Scholar 

  10. Gristina AG. Biomaterial-centered infection—microbial adhesion versus tissue integration. Science. 1987;237:1588–95. doi:10.1126/science.3629258.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Wang J, et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials. 2004;25:583–92. doi:10.1016/S0142-9612(03)00559-3.

    Article  PubMed  CAS  Google Scholar 

  12. Kuijer R, et al. Assessing infection risk in implanted tissue-engineered devices. Biomaterials. 2007;28:5148–54. doi:10.1016/j.biomaterials.2007.06.003.

    Article  PubMed  CAS  Google Scholar 

  13. Yang YZ, et al. Review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials. 2005;26:327–37. doi:10.1016/j.biomaterials.2004.02.029.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Ha SW, et al. Plasma-sprayed hydroxylapatite coating on carbon-fiber-reinforced thermoplastic composite-materials. J Mater Sci Mater Med. 1994;5:481–4. doi:10.1007/BF00058987.

    Article  CAS  Google Scholar 

  15. Blind O, et al. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates. Dent Mater. 2005;21:1017–24. doi:10.1016/j.dental.2004.12.003.

    Article  PubMed  CAS  Google Scholar 

  16. Lee SH, et al. Nano-sized hydroxyapatite coatings on Ti substrate with TiO2 buffer layer by e-beam deposition. J Am Ceram Soc. 2007;90:50–6. doi:10.1111/j.1551-2916.2006.01351.x.

    Article  CAS  Google Scholar 

  17. Jonasova L, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials. 2004;25:1187–94. doi:10.1016/j.biomaterials.2003.08.009.

    Article  PubMed  CAS  Google Scholar 

  18. Mihranyan A, et al. Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Langmuir. 2009;25:1292–5. doi:10.1021/la803520k.

    Article  PubMed  CAS  Google Scholar 

  19. Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005;26:1097–108. doi:10.1016/j.biomaterials.2004.05.034.

    Article  PubMed  CAS  Google Scholar 

  20. Yang BC, et al. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–10. doi:10.1016/S0142-9612(03)00626-4.

    Article  PubMed  CAS  Google Scholar 

  21. Forsgren J, et al. Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater. 2007;3:980–4. doi:10.1016/j.actbio.2007.03.006.

    Article  PubMed  CAS  Google Scholar 

  22. Dunn CJ, et al. Etidronic acid—a review of its pharmacological properties and therapeutic efficacy in resorptive bone-disease. Drugs Aging. 1994;5:446–74. doi:10.2165/00002512-199405060-00006.

    Article  PubMed  CAS  Google Scholar 

  23. Aebli N, et al. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. J Biomed Mater Res A. 2005;73A:295–302. doi:10.1002/jbm.a.30299.

    Article  CAS  Google Scholar 

  24. Kim HW, et al. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med. 2005;16:189–95. doi:10.1007/s10856-005-6679-y.

    Article  PubMed  Google Scholar 

  25. Hildebrand HF, et al. Surface coatings for biological activation and functionalization of medical devices. Surf Coat Technol. 2006;200:6318–24. doi:10.1016/j.surfcoat.2005.11.086.

    Article  CAS  Google Scholar 

  26. Eberhardt C, et al. The bisphosphonate ibandronate accelerates osseointegration of hydroxyapatite-coated cementless implants in an animal model. J Orthop Sci. 2007;12:61–6. doi:10.1007/s00776-006-1081-2.

    Article  PubMed  CAS  Google Scholar 

  27. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9. doi:10.1039/b515219b.

    Article  PubMed  CAS  Google Scholar 

  28. Neut D, et al. Gentamicin-loaded bone cement with clindamycin or fusidic acid added: biofilm formation and antibiotic release. J Biomed Mater Res A. 2005;73A:165–70. doi:10.1002/jbm.a.30253.

    Article  CAS  Google Scholar 

  29. Peter B, et al. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36:52–60. doi:10.1016/j.bone.2004.10.004.

    Article  PubMed  CAS  Google Scholar 

  30. Brohede U, et al. A novel graded bioactive high adhesion implant coating. Appl Surf Sci. 2009; in press. doi:10.1016/j.apsusc.2009.04.149.

  31. Bunker BC, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science. 1994;264:48–55. doi:10.1126/science.264.5155.48.

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Bourgeois B, et al. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J Biomed Mater Res A. 2003;65A:402–8. doi:10.1002/jbm.a.10518.

    Article  CAS  Google Scholar 

  33. Streng WH. Microionization constants of commercial cephalosporins. J Pharm Sci. 1978;67:666–9. doi:10.1002/jps.2600670525.

    Article  PubMed  CAS  Google Scholar 

  34. Rolinson GN. Laboratory evaluation of amoxicillin. J Infect Dis. 1974;129:139.

    Google Scholar 

Download references

Acknowledgements

The Swedish funding agency Vinnova and the Göran Gustafsson foundation are acknowledged for funding the present work. The Knut and Alice Wallenberg Foundation is also acknowledged for financing the analysis equipment used.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Håkan Engqvist or Maria Strømme.

Additional information

U. Brohede and J. Forsgren have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brohede, U., Forsgren, J., Roos, S. et al. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci: Mater Med 20, 1859–1867 (2009). https://doi.org/10.1007/s10856-009-3749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3749-6

Keywords

Navigation