Skip to main content

Advertisement

Log in

A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass® [(CaO)26.9(Na2O)24.4(SiO2)46.1(P2O5)2.6], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass® but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass® samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass® is dominated by a broad amorphous feature around 2.2 Å−1 which is characteristic of sodium calcium silicate glass. After reacting Bioglass® in SBF a second broad amorphous feature evolves ~1.6 Å−1 which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass®. Bragg peaks characteristic of hydroxyapatite form after 1–3 days of reacting in SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 5(6), 117 (1971). doi:10.1002/jbm.820050611

    Article  Google Scholar 

  2. A.E. Clark, L.L. Hench, H.A. Paschall, J. Biomed. Mater. Res. 10, 161 (1976). doi:10.1002/jbm.820100202

    Article  PubMed  CAS  Google Scholar 

  3. L.L. Hench, J. Wilson, D.C. Greenspan, J. Aust. Ceram. Soc. 40, 1 (2004)

    CAS  Google Scholar 

  4. L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006). doi:10.1007/s10856-006-0432-z

    Article  PubMed  CAS  Google Scholar 

  5. See www.novabone.com and www.novamin.com for commercial details

  6. S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41, 3130 (2002). doi:10.1002/1521-3773(20020902)41:17<3130:AID-ANIE3130>3.0.CO;2-1

    Article  CAS  Google Scholar 

  7. R.J. Newport, L.J. Skipper, D. Carta, D.M. Pickup, F.E. Sowrey, M.E. Smith, P. Saravanapavan, L.L. Hench, J. Mater. Sci. Mater. Med. 17, 1003 (2006). doi:10.1007/s10856-006-0436-8

    Article  PubMed  CAS  Google Scholar 

  8. L.J. Skipper, F.E. Sowrey, R. Rashid, R.J. Newport, Z. Lin, M.E. Smith, Phys. Chem. Glasses 46(4), 372 (2005)

    CAS  Google Scholar 

  9. V. FitzGerald, D.M. Pickup, D. Greenspan, G. Sarkar, J.J. Fitzgerald, K.M. Wetherall, R.M. Moss, J.R. Jones, R.J. Newport, Adv. Funct. Mater. 17, 3746 (2007). doi:10.1002/adfm.200700433

    Article  CAS  Google Scholar 

  10. V. FitzGerald, D.M. Pickup, D. Carta, D. Greenspan, R.J. Newport, Phys. Chem. Glasses 48, 340 (2007)

    CAS  Google Scholar 

  11. V. FitzGerald, D.M. Pickup, D. Greenspan, K.M. Weatherall, R.M. Moss, J.R. Jones, R.J. Newport, Phys. Chem. Glasses (2008) (in press)

  12. J.S. Rigden, R.J. Newport, G.J. Bushnell-Wye, J. Mater. Res. 12, 264 (1997). doi:10.1557/JMR.1997.0034

    Article  ADS  CAS  Google Scholar 

  13. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24(6), 721 (1990). doi:10.1002/jbm.820240607

    Article  PubMed  CAS  Google Scholar 

  14. International standard: ISO/FDIS 23317:2007

  15. I. Rehman, J.C. Knowles, W. Bonfield, J. Biomed. Mater. Res. 41(1), 162 (1998). doi:10.1002/(SICI)1097-4636(199807)41:1<162:AID-JBM19>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  16. V. FitzGerald, R.A. Martin, J.R. Jones, D. Qiu, K.M. Wetherall, R.M. Moss, R.J, Newport, J. Biomed. Mater. Res. A (in press). doi:10.1002/jbm.a.32206

  17. H. Ohsato, I. Maki, Y. Takeuchi, Acta Crystallogr. C 41, 1575 (1985). doi:10.1107/S0108270185008617

    Article  Google Scholar 

  18. L. Stork, P. Mueller, R. Dronskowski, J.R. Ortlepp, Z. Kristallogr. 220, 201 (2005). doi:10.1524/zkri.220.2.201.59118

    Article  CAS  Google Scholar 

  19. M.M. Pereira, A.E. Clark, L.L. Hench, J. Am. Ceram. Soc. 78(9), 2463 (1995). doi:10.1111/j.1151-2916.1995.tb08686.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the EPSRC for financial support (Grant no. EP/E050611/1) SRS for beam time allocation, Dr. Tony Bell for assistance on station 9.1 and acknowledge use of the Chemical Database Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.A., Twyman, H., Qiu, D. et al. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction. J Mater Sci: Mater Med 20, 883–888 (2009). https://doi.org/10.1007/s10856-008-3661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3661-5

Keywords

Navigation