Skip to main content
Log in

Effects of Ni layer thickness of thin-ENEPIG surface finishes on the interfacial reactions and shear strength of Sn-3.0Ag–0.5Cu solder joints during aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of the thickness of the Ni layer in thin electroless-nickel electroless-palladium immersion gold (thin-ENEPIG) surface-finished printed circuit boards (PCB) with Sn-3.0Ag–0.5Cu (SAC305) solder joints during aging treatment were investigated. We evaluated the interfacial reactions and mechanical properties of 0.3–1.0 µm thick Ni layers in thin-ENEPIG PCBs with SAC305 solder joints at aging temperatures of 75, 100, 125, and 150 °C for 1000 h. A needle-type (Cu,aNi)6Sn5 intermetallic compound (IMC) layer formed at the interface of the SAC solder and Cu substrate. In addition, P-rich Ni layers were formed at the interface of the (Cu,Ni)6Sn5 IMC and Cu substrate for the 0.5–1.0 µm thick Ni joints. The thicknesses of the (Cu,Ni)6Sn5 IMCs with 0.3 and 0.5 µm Ni joints were strongly affected by the aging time and temperature. In contrast, the IMC growth rates of the 0.7 and 1.0 µm thick Ni joints were significantly lower than that of the 0.3 µm thick Ni joint. The reason for this behavior is that the P-rich Ni layer acts as a barrier for Sn and Cu diffusion at the joint and was maintained at the IMC/Cu interface after aging. In high-speed shear tests, the shear strengths of all Ni joints aged at 75 °C were similar. However, the rate of reduction in shear strength decreased with increasing Ni layer thickness as the aging time and temperature increased, but the shear strength of the 0.3 µm Ni joint rapidly decreased with increasing aging temperature and time. In contrast, the shear strengths of the 0.7 and 1.0 µm Ni joints slightly decreased with increasing aging temperature and time. The brittle fracture rates of the joints decreased with increasing Ni thickness, and we determined that this occurred because of the remaining P-rich Ni layer, which acts as a diffusion barrier during aging, at the interface of the 0.7 and 1.0 µm Ni joints. In low-speed shear tests, the shear strengths of the 0.7 and 1.0 µm Ni joints were slightly higher than those of the 0.3 and 0.5 µm Ni joints after aging at 125 and 150 °C for the entire aging period. Most fractures occurred via a ductile mode regardless of the Ni layer thickness. Therefore, a Ni layer thickness of more than 0.7 µm in thin-ENEPIG finished PCB with SAC305 solder joints is expected to yield high reliability on aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, C. Lee, J. Alloys. Compd. 503, 25 (2010)

    Article  Google Scholar 

  2. K. Zeng, K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002)

    Article  Google Scholar 

  3. J. Keller, D. Baither, U. Wilke, G. Schmitz, Acta Mater. 59, 2731 (2011)

    Article  Google Scholar 

  4. W.R. Myung, Y.I. Kim, S.B. Jung, J. Alloys. Compd. 615, s411 (2014)

    Article  Google Scholar 

  5. M.I.I. Ramli, M.A.A. Mohd Salleh, F.A. Mohd Sobri, P. Narayanan, K. Sweatman, K. Nogita, J. Mater. Sci 30, 3669 (2019)

    Google Scholar 

  6. Y. Shi, Y. Yan, J. Liu, Z. Xia, Y. Lei, F. Guo, X. Li, J. Electron. Mater. 38, 1866 (2009)

    Article  Google Scholar 

  7. X. Deng, G. Piotrowski, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1403 (2003)

    Article  Google Scholar 

  8. S. Ahat, M. Sheng, L. Luo, J. Electron. Mater. 30, 1317 (2001)

    Article  Google Scholar 

  9. L.R. Garcia, W.R. Osorio, A. Garcia, Mater. Des. 32, 4763 (2011)

    Article  Google Scholar 

  10. T. R. Bieler, H. Jiang, L. P. Lehman, T. Kirkpatrick, E. J. Cotts, 2006 Electronic Components and Technology Conference, 1462

  11. F. Gao, H. Nishikawa, T. Takemoto, J. Electron. Mater. 36, 1630 (2007)

    Article  Google Scholar 

  12. Y. Zhang, Z. Cai, J. C. Suhling, P. Lall, M. J. Bozack, 2008 Electronic components and technology conference, 99 (2008)

  13. K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011)

    Article  Google Scholar 

  14. G. Chen, F. Wu, C. Liu, V.V. Silberschmidt, Y.C. Chan, J. Alloys. Compd. 656, 500 (2016)

    Article  Google Scholar 

  15. M. Lu, D. Y. Shih, 47th annual international reliability physics symposium 2009, 149 (2009)

  16. P. Liu, P. Yao, J. Liu, J. Alloys. Compd. 470, 188 (2009)

    Article  Google Scholar 

  17. K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys. Compd. 509, 3319 (2011)

    Article  Google Scholar 

  18. R. Zhang, F. Guo, J. Liu, H. Shen, F. Tai, J. Electron. Mater. 38, 241 (2009)

    Article  Google Scholar 

  19. J.W. Yoon, B.I. Noh, Y.H. Lee, H.S. Lee, S.B. Jung, Microelectron. Reliab. 48, 1864 (2008)

    Article  Google Scholar 

  20. J.W. Yoon, B.I. Noh, S.B. Jung, J. Electron. Mater. 40, 1950 (2011)

    Article  Google Scholar 

  21. K. Zeng, R. Stierman, D. Abbott, M. Murtuza, in Thermal and thermomechanical proceedings 10th intersociety conference on phenomena in electronics systems in 2006 (IEEE), 1111, (2006)

  22. J.W. Yoon, J.H. Bang, C.W. Lee, S.B. Jung, J. Alloys. Compd. 627, 276 (2015)

    Article  Google Scholar 

  23. Y.M. Kim, J.Y. Park, Y.H. Kim, J. Electron. Mater. 41, 763 (2012)

    Article  Google Scholar 

  24. T.T. Chou, C.J. Fleshman, H. Chen, J.G. Duh, J. Mater. Sci. 30, 2342 (2019)

    Google Scholar 

  25. J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, S.B. Jung, J. Alloys. Compd. 509, L153 (2011)

    Article  Google Scholar 

  26. C.F. Tseng, J.G. Duh, Mater. Sci. Eng., A 580, 169 (2013)

    Article  Google Scholar 

  27. J. Kim, W.R. Myung, S.B. Jung, J. Electron. Mater. 45, 5895 (2016)

    Article  Google Scholar 

  28. C.Y. Ho, J.G. Duh, Mater. Sci. Eng. A 611, 162 (2014)

    Article  Google Scholar 

  29. J.W. Yoon, J.H. Back, S.B. Jung, J. Mater. Sci. 29, 4724 (2018)

    Google Scholar 

  30. C.E. Ho, S.J. Wang, C.W. Fan, W.H. Wu, J. Electron. Mater. 43, 16 (2014)

    Article  Google Scholar 

  31. S.S. Ha, J.K. Jang, S.O. Ha, J.W. Kim, J.W. Yoon, B.W. Kim, S.K. Park, S.B. Jung, J. Electron. Mater. 38, 2489 (2009)

    Article  Google Scholar 

  32. J. Wang, S. Xue, P. Zhang, P. Zhai, Y. Tao, J. Mater. Sci. 30, 9065 (2019)

    Google Scholar 

  33. X. Deng, R.S. Shidhu, P. Johnson, N. Chawla, Metall. Mater. Trans. A 36, 55 (2005)

    Article  Google Scholar 

  34. J.H. Cho, J.W. Ahn, Y.E. Yoon, S.B. Shin, J. Jung, Mater. Sci. 23, 1515 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a research project grant from the Advanced Technology Center [Grant Number 10062737] from the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Boo Jung or Jeong-Won Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Back, JH., Jung, SB. et al. Effects of Ni layer thickness of thin-ENEPIG surface finishes on the interfacial reactions and shear strength of Sn-3.0Ag–0.5Cu solder joints during aging. J Mater Sci: Mater Electron 30, 12911–12923 (2019). https://doi.org/10.1007/s10854-019-01653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01653-x

Navigation