Skip to main content
Log in

A controllable hydrothermal fabrication of hierarchical ZnO microstructures and its gas sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, rod-flower like ZnO hierarchical microstructures with high uniformity are synthesized from the thermal decomposition of Zn(NH3)42+ precursors, which are prepared via a surfactant-assisted hydrothermal process. The as-synthesized hierarchical ZnO microstructure is assembled from columnar nanorods, and the measured length to diameter ratio of the nanorod is about 20. The morphology of the hierarchical ZnO microstructure can be tailored by varying hydrothermal conditions, e.g., hydrothermal temperature, reaction time, concentration of Zn2+ and zinc salts. Moreover, based on the experimental results, the possible reaction mechanism for the growth of the as-synthesized hierarchical ZnO microstructures is also discussed in detail,and the Zn2+ concentration was found to be a crucial role in the formation and nucleation of the rod flower-like microstructures. In addition, the gas sensing test demonstrates that the sensors based on hierarchical ZnO microstructures exhibits excellent gas sensing properties due to its unique architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Ichikawa, S. Shiratori, Inorg. Chem. 50, 999–1004 (2011)

    Article  Google Scholar 

  2. R. Krishnapriya, S. Praneetha, A.V. Murugan, New J. Chem. 40, 5080–5089 (2016)

    Article  Google Scholar 

  3. H.Y. Sun, Y.L. Yu, J. Luo, M. Ahmad, J. Zhu, CrystEngComm 14, 8626–8632 (2012)

    Article  Google Scholar 

  4. S. Thiemann, M. Gruber, I. Lokteva, J. Hirschmann, M. Halik, J. Zaumseil, Appl. Mater. Interfaces 5, 1656–1662 (2013)

    Article  Google Scholar 

  5. J. Li, H.Q. Fan, X.H. Jia, J. Phys. Chem. C 114, 14684–14691 (2010)

    Article  Google Scholar 

  6. J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, K. Shimanoe, N. Yamazoe, Appl. Mater. Interfaces 8, 6669–6677 (2016)

    Article  Google Scholar 

  7. J.-H. Park, J.-H. Lee, Sens. Actuators B 136, 151–157 (2009)

    Article  Google Scholar 

  8. C.-S. Moon, H.-R. Kim, G. Auchterlonie, J. Drennan, J.-H. Lee, Sens. Actuators B 131, 556–564 (2008)

    Article  Google Scholar 

  9. X.F. Chu, D.L. Jiang, C.M. Zheng, Sens. Actuators B 123, 793–797 (2007)

    Article  Google Scholar 

  10. J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2, 1287–1291 (2002)

    Article  Google Scholar 

  11. X.W. Lou, L.A. Archer, Z.C. Yang, Adv. Mater. 20, 3987–4019 (2008)

    Article  Google Scholar 

  12. H.H. Wang, C.S. Xie, J. Cryst. Growth 291, 187–195 (2006)

    Article  Google Scholar 

  13. Q. Hou, L.Q. Zhu, H.L. Chen, H.C. Liu, W.P. Li, Electrochim. Acta 78, 55–64 (2012)

    Article  Google Scholar 

  14. Q. Zhou, W.G. Chen, J. Li, C. Tang, H. Zhang, Mater. Lett. 161, 499–502 (2015)

    Article  Google Scholar 

  15. C. Xu, G. Xu, Y. Liu, G.A. Wang, Solid State Commun. 122 175–179 (2002)

  16. H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D.J. Kim, H. Kim, S.K. Hong, J. Mater. Chem. 22, 1127–1134 (2012)

    Article  Google Scholar 

  17. P. Hu, X. Zhang, N. Han, W.C. Xiang, Y.B. Cao, F.L. Yuan, Cryst. Growth Des. 11, 1520–1526 (2011)

    Article  Google Scholar 

  18. F.F. Wang, L. Cao, A.L. Pan, R.B. Liu, X. Wang, X. Zhu, S.Q. Wang, B.S. Zou, J. Phys. Chem. C 111, 7655–7660 (2007)

    Article  Google Scholar 

  19. D.F. Zhang, L.D. Sun, J. Zhang, Z.G. Yan, C.H. Yan, Cryst. Growth Des. 8, 3609–3615 (2008)

    Article  Google Scholar 

  20. W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater. 17, 59–64 (2007)

    Article  Google Scholar 

  21. Z. Jing, J. Zhan, Adv. Mater. 20, 4547–4551 (2008)

    Article  Google Scholar 

  22. K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, S. Fujihara, J. Sol Gel Sci. Technol. 39, 63–72 (2006)

    Article  Google Scholar 

  23. R. Krishnapriya, S. Praneetha, A.V. Murugan, CrystEngComm 17, 8353–8367 (2015)

    Article  Google Scholar 

  24. Y.G. Sun, R.J. Zou, W.Y. Li, Q.W. Tian, J.H. Wu, Z.G. Chen, J.Q. Hu, CrystEngComm 13, 6107–6113 (2011)

Download references

Acknowledgements

This work was financially supported by Changzhou Science, Technology Innovation Project, Production-teaching-research project of Changzhou university institute of Huaide and 2016 Research and Innovation Project for College Graduates of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Yang, R., Zhao, Y. et al. A controllable hydrothermal fabrication of hierarchical ZnO microstructures and its gas sensing properties. J Mater Sci: Mater Electron 29, 5143–5149 (2018). https://doi.org/10.1007/s10854-017-8478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8478-x

Navigation