Skip to main content
Log in

Low indium content In–Zn–O system towards transparent conductive films: structure, properties and comparison with AZO and GZO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, low content indium doped zinc oxide (IZO) thin films were deposited on glass substrates by RF magnetron sputtering using IZO ceramic targets with the In2O3 doping content of 2, 6, and 10 wt%, respectively. The influences of In2O3 doping content and substrate temperature on the structure and morphology, electrical and optical properties, and environmental stability of IZO thin films were investigated. It was found that the 6 wt% doped IZO thin film deposited at 150 °C exhibited the best crystal quality and the lowest resistivity of 9.87 × 10−4 Ω cm. The corresponding Hall mobility and carrier densities were 9.20 cm2 V−1 s−1 and 6.90 × 1020 cm−3, respectively. Compared with 2 wt% Al2O3 doped ZnO and 5 wt% Ga2O3 doped ZnO thin films, IZO thin film with the In2O3 doping content of 6 wt% featured the lowest surface roughness of 1.3 nm. It also showed the smallest degradation with the sheet resistance increased only about 4.4% at a temperature of 121 °C, a relative humidity of 97% for 30 h. IZO thin film with 6 wt% In2O3 doping also showed the smallest deterioration with the sheet resistance increased only about 2.8 times after heating at 500 °C for 30 min in air. The results suggested that low indium content doped ZnO thin films might meet practical requirement in environmental stability needed optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.T. Zhu, J. Li, Y. Yang, P.J. Lan, J.H. Huang, Y.H. Lu, R.Q. Tan, N. Dai, W.J. Song, Thin Solid Films 605, 95–101 (2016)

    Article  Google Scholar 

  2. K. Zhu, Y. Yang, J.H. Huang, Y.H. Lu, J. Li, R.Q. Tan, P. Cui, W.J. Song, J. Electron. Mater. 43, 3973–3978 (2014)

    Article  Google Scholar 

  3. T. Tohsophon, A. Dabirian, S. De Wolf, M. Morales-Masis, C. Ballif, APL Mater. 3, 116105 (2015)

    Article  Google Scholar 

  4. K. Ellmer, A. Bikowski, J. Phys. D 49, 413002 (2016)

    Article  Google Scholar 

  5. C.T. Zhu, J. Li, Y. Yang, J.H. Hung, Y.H. Lu, R.Q. Tan, N. Dai, W.J. Song, Phys. Status Solidi A 212, 1713–1718 (2015)

    Article  Google Scholar 

  6. B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, D.W. Zeng, C.S. Xie. Phys. Status Solidi A 209, 1251–1258 (2012)

    Article  Google Scholar 

  7. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, L781–L784 (1985)

    Article  Google Scholar 

  8. K. Ellmer, Nat. Photonic 6, 809–817 (2012)

    Article  Google Scholar 

  9. M.P. Taylor, D.W. Readey, M.F.A.M. van Hest, C.W. Teplin, J.L. Alleman, M.S. Dabney, L.M. Gedvilas, B.M. Keyes, B. To, J.D. Perkins, D.S. Ginley, Adv. Funct. Mater. 18, 3169–3178 (2008)

    Article  Google Scholar 

  10. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Thin Solid Films 516, 5894–5898 (2008)

    Article  Google Scholar 

  11. H.-C. Cheng, C.-Y. Tsay, J. Alloys Compd. 507, L1–L3 (2010)

    Article  Google Scholar 

  12. S. K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Prog. Photovolt. 24, 74–82 (2015)

    Article  Google Scholar 

  13. A. Illiberi, R. Scherpenborg, F. Roozeboom, P. Poodt, ECS J. Solid State Sci. Technol. 3, 111–114 (2014)

    Article  Google Scholar 

  14. R. Bel-Hadj-Tahar, A.B. Mohamed, New J. Glass Ceram. 4, 55–65 (2014)

    Article  Google Scholar 

  15. O. Dinner, G. E. Shter, G. S. Grader, J. Sol-Gel Sci. Technol. 81, 3–10 (2017)

    Article  Google Scholar 

  16. B. Khalfallah, F. Chaabouni, M. Abaab, J. Mater. Sci. 26, 5209–5216 (2015)

    Google Scholar 

  17. Y.R. Park, E.K. Kim, D. Jung, T.S. Park, Y.S. Kim, Appl. Surf. Sci. 254, 2250–2254 (2008)

    Article  Google Scholar 

  18. Y. Li, Q. Huang, X.F. Bi, J. Appl. Phys. 113, 053702 (2013)

    Article  Google Scholar 

  19. X.H. Yu, J. Ma, F. Ji, Y.H. Wang, X.J. Zhang, C.F. Cheng, H.L. Ma, J. Cryst. Growth 274, 474–479 (2005)

    Article  Google Scholar 

  20. L.P. Peng, L. Fang, X.F. Yang, et al. Phys. E 41, 1819–1823 (2009)

    Article  Google Scholar 

  21. C.W. Gorrie, A.K. Sigdel, J.J. Berry, B.J. Reese, M.F.A.M. van Hest, P.H. Holloway, D.S. Ginley, J.D. Perkins, Thin Solid Films 519, 190–196 (2010)

    Article  Google Scholar 

  22. N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche, C. Guéry, J. Mater. Chem. 10, 2315–2319 (2000)

    Article  Google Scholar 

  23. A. Di Trolio, E.M. Bauer, G. Scavia, C. Veroli, J. Appl. Phys. 105, 113109 (2009)

    Article  Google Scholar 

  24. J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, J. Appl. Phys. 101, 083705 (2007)

    Article  Google Scholar 

  25. Q.B. Ma, Z.Z. Ye, H.P. He, L.P. Zhu, J.Y. Huang, Y.Z. Zhang, B.H. Zhao, Scripta. Mater. 58, 21–24 (2008)

    Article  Google Scholar 

  26. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985)

    Article  Google Scholar 

  27. J.H. Gu, L. Long, Z. Lu, Z.Y. Zhong, J. Mater. Sci. 26, 734–741 (2015)

    Google Scholar 

  28. Y.N. Kim, H.G. Shin, J.K. Song, D.H. Cho, H.S. Lee, Y.G. Jung, J. Mater. Res. 20, 1574–1579 (2011)

    Article  Google Scholar 

  29. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci 50, 293–340 (2005)

    Article  Google Scholar 

  30. C. Guillen, J. Herrero, Surf. Coat. Tech. 201, 309–312 (2006)

    Article  Google Scholar 

  31. W. Lin, R.X. Ma, J.S. Xue, B. Kang, Sol. Energy Mat. Sol. C 91, 1902–1905 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61574144, 21377063), the Zhejiang Natural Science Foundation (LY15F040004), the program for the Ningbo Municipal Science and Technology Innovative Research Team (2015B11002), and the International S&T Cooperation Program of China (ISTCP) (2015DFH60240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Yang or Weijie Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, J., Yang, Y. et al. Low indium content In–Zn–O system towards transparent conductive films: structure, properties and comparison with AZO and GZO. J Mater Sci: Mater Electron 28, 13297–13302 (2017). https://doi.org/10.1007/s10854-017-7165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7165-2

Navigation