Skip to main content
Log in

Microwave dielectric ceramic of LiZnPO4 for LTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The feasibility of LiZnPO4 (LZP) ceramic prepared by a solid-state reaction method for low-temperature co-fired ceramic application was investigated. Dense ceramic with 94.37% relative density was obtained when the ceramic was sintered at 850 °C for 4 h. The LZP ceramic sintered at 850 °C for 4 h possessed a relative permittivity (εr) of 5.3 and high quality factor (Q × f) of 28,496 GHz (at 12.9 GHz) with a temperature coefficient of resonant frequency (τ f ) of −80.4 ppm/°C. The relatively large negative τ f value was reduced by adding TiO2 into LZP ceramics. The microstructure, microwave dielectric properties and cofiring compatibility with silver of LZP–TiO2 composites were discussed. The composite with 0.17 volume fraction of TiO2 sintered at 950 °C for 4 h shows εr = 10.0, Q × f = 10,025 GHz, τ f  = +1.6 ppm/°C. The LZP-TiO2 composite was chemically compatible with the commonly used electrode material silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Tang, X. Guo, S.Q. Yu, Z.X. Fang, S.R. Zhang, The shrinking process and microwave dielectric properties of BaCu(B2O5)-added 0.85BaTi4O9–0.15BaZn2Ti4O11 ceramics. Mater. Res. Bull. 66, 163–168 (2015)

    Article  Google Scholar 

  2. X. Tang, H. Yang, Q.L. Zhang, J.H. Zhou, Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition. Ceram. Int. 40, 12875–12881 (2014)

    Article  Google Scholar 

  3. G. Dou, D.X. Zhou, M. Guo, S.P. Gong, Low-temperature sintered Zn2SiO4-CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J. Alloys Compd. 513, 466–473 (2012)

    Article  Google Scholar 

  4. G.H. Chen, M.Z. Hou, Y. Yang, Microwave dielectric properties of low-fired Li2TiO3 ceramics doped with Li2O–MgO–B2O3 frit. Mater. Lett. 89, 16–18 (2012)

    Article  Google Scholar 

  5. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)

    Article  Google Scholar 

  6. Q. Yu, H.D. Zeng, Q. Jiang, Z. Liu, L.Y. Sun, J. Ren, G.R. Chen, Preparation and luminescent properties of Mn2+ doped glass and glass-ceramics containing LiZnPO4 nanocrystals. J. Non-Cryst. Solids 35(4), 165–168 (2014)

    Article  Google Scholar 

  7. C.M. OuYang, M.A. Shuai, Y. Rao, X. Zhou, X. Zhou, LiZnPO4:Tb3+, Ce3+, green phosphors with high efficiency. J. Rare Earths 30(7), 637–640 (2012)

    Article  Google Scholar 

  8. X. Hu, Z.F. Cheng, Y. Li, Z.Y. Ling, Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics. J. Alloys Compd. 651, 290–293 (2015)

    Article  Google Scholar 

  9. D. Thomas, M.T. Sebastian, Temperature-compensated LiMgPO4: A new glass-free low-temperature cofired ceramic. J. Am. Ceram. Soc. 93, 3828–3831 (2010)

    Article  Google Scholar 

  10. J.A. Gard, G. Torres-Trevino, A.R. West, Crystal data for LiZnPO4. J. Mater. Sci. Lett. 4, 1138–1139 (1985)

    Article  Google Scholar 

  11. D. Zhou, L.X. Pang, X. Yao, H. Wang, Influence of sintering process on the microwave dielectric properties of Bi(V0.008Nb0.992)O4 ceramics. Mater. Chem. Phys. 115, 126–131 (2009)

    Article  Google Scholar 

  12. G. Chen, M. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8, microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10(3), 492–501 (2013)

    Article  Google Scholar 

  13. C.H. Hsu, H.A. Ho, Microwave dielectric in the Sm(Co1/2Ti1/2)O3–CaTiO3 ceramic system with near-zero temperature coefficient with resonant frequency. Mater. Lett. 64, 396–398 (2010)

    Article  Google Scholar 

  14. D. Borrow, T. Petroff, R. Tandon, M. Sayer, Slab plasmon polaritons and waveguide modes in four-layer resonant semiconductor waveguides. J. Appl. Phys. 81, 8761 (1997)

    Google Scholar 

  15. P. Sarah, S.V. Suryanarayana, Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate. Bull. Mater. Sci. 26(7), 745–747 (2003)

    Article  Google Scholar 

  16. K. Lichtenecker, Dielectric constant of natural and synthetic mixtures. Phys. Z 27(1926)115

    Google Scholar 

  17. H.H.B. Rocha, F.N.A. Freire, M.R.P. Santos, Radio-frequency (RF) studies of the magneto-dielectric composites: Cr0.75Fe1.25O3(CRFO)-Fe0.5Cu0.75Ti0.75O3(FCTO). Phys. B 403(17), 2902–2909 (2008)

    Article  Google Scholar 

  18. D.W. Kim, H.J. Youn, K.S. Hong, C.K. Kim, Microwave dielectric properties of (1-x)Ba5Nb4O15–xBaNb2O6 mixtures. Jpn. J. Appl. Phys. 41, 3812–3816 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51462005), the Research funds of The Guangxi Key Laboratory of Information Materials (Nos. 131018-Z and 131004-Z), Program for Postgraduate Joint Training Base (No. 20160513-14-Z) and Project supported by National Undergraduate Innovation Program of the Ministry of Education of China (1401010113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C.C., Jiang, D.H., Chen, G.H. et al. Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J Mater Sci: Mater Electron 28, 12026–12031 (2017). https://doi.org/10.1007/s10854-017-7013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7013-4

Keywords

Navigation