Skip to main content
Log in

Formation of neodymium oxide by thermal oxidation of sputtered Nd thin film on Si substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper aims to report on the formation of neodymium oxide by thermal oxidation of sputtered metallic Nd thin film deposited on Si substrate. Sputtered Nd thin film on Si substrate followed by thermal oxidation in O2 ambient at a fixed duration of 15 min for various temperatures (500–1100 °C) has been investigated systematically. The structural and chemical properties of the formed thin films were evaluated by X-ray diffraction analysis, Fourier transform infrared analysis, Raman analysis and high resolution transmission electron microscopy analysis. It was found that cubic phase of Nd2O3 film was formed along with orthorhombic phase of Nd2Si2O7 and multiple phases of SiO2 which consists of monoclinic, tetragonal, and hexagonal phases. Based on the electrical results, sample thermally oxidized at 900 °C revealed the highest electrical breakdown field of 5.26 MV/cm at the lowest leakage current density of 2.19 × 10− 6 A/cm2 together with lowest Q eff and average interface trap density. This is attributed to the lowest Nd-silicate content, the largest SiO2 and the smallest Nd2Si2O7 crystallite size, and highest barrier height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Laha, A. Fissel, H.J. Osten, Appl. Phys. Lett. 102, 202902 (2013)

    Article  Google Scholar 

  2. L. Marsella, V. Fiorentini, Phys. Rev. B 69, 172103 (2004)

    Article  Google Scholar 

  3. A. Kuriyama, S.-I. Ohmi, K. Tsutsui, H. Iwai, Jpn. J. Appl. Phys. 44, 1045 (2005)

    Article  Google Scholar 

  4. V.G. Oklobdzija, The Computer Engineering Handbook (CRC Press, Boca Raton, 2001)

    Google Scholar 

  5. V.G. Oklobdzija, Digital Design and Fabrication (CRC Press, Boca Raton, 2007

    Google Scholar 

  6. K. Kakushima, K. Tsutsui, S.-I. Ohmi, P. Ahmet, V. Rao, H. Iwai, In Rare earth oxide thin films, (Springer, Berlin, 2007), pp. 345–365

    Google Scholar 

  7. C.L. Claeys, Electrochemical Society Meeting and Electrochemical Society. Electronics Division: ULSI Process Integration II: Proceedings of the International Symposium. (Electrochemical Society, 2001)

  8. H.J. Osten, E. Bugiel, O. Kirfel, M. Czernohorsky, A. Fissel, J. Cryst. Growth 278, 18–24 (2005)

    Article  Google Scholar 

  9. J. Wang, A. Laha, A. Fissel, D. Schwendt, R. Dargis, T. Watahiki, R. Shayduk, W. Braun, T. Liu, H.J. Osten, in Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on, (2009), pp. 436–440

  10. Y. Oniki, Y. Iwazaki, M. Hasumi, Tomo Ueno and Koichi Kuroiwa. ECS Trans. 16, 139–145 (2008)

    Article  Google Scholar 

  11. A. Kosola, J. Päiväsaari, M. Putkonen, L. Niinistö, Thin Solid Films 479, 152–159 (2005)

    Article  Google Scholar 

  12. S. Jayanti, X. Yang, D.J. Lichtenwalner, V. Misra, Appl. Phys. Lett. 96, 092905 (2010)

    Article  Google Scholar 

  13. B.H. Lee, L. Kang, R. Nieh, W.J. Qi, J.C. Lee, Appl. Phys. Lett. 76, 1926–1928 (2000)

    Article  Google Scholar 

  14. S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, H. Iwai, J. Electrochem. Soc. 150, F134–F140 (2003)

    Article  Google Scholar 

  15. L. Tye, N.A. El-Masry, T. Chikyow, P. McLarty, S.M. Bedair, Appl. Phys. Lett. 65, 3081–3083 (1994)

    Article  Google Scholar 

  16. Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, S. Ikegawa. Jpn. J. Appl. Phys. 41, 2480 (2002)

    Article  Google Scholar 

  17. K. Kukli, M. Ritala, T. Pilvi, T. Sajavaara, L. Markku, A.C. Jones, H.C. Aspinall, D.C. Gilmer, P.J. Tobin, Chem. Mater. 16, 5162–5168 (2004)

    Article  Google Scholar 

  18. A. Fissel, H.J. Osten, E. Bugiel, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 21, 1765–1772 (2003)

    Article  Google Scholar 

  19. C.-H. Chen, I.Y.-K. Chang, J.Y.-M. Lee, F.-C. Chiu, Appl. Phys. Lett. 92,  3507 (2008)

    Google Scholar 

  20. H. Yamada, T. Shimizu, E. Suzuki, Jpn. J. Appl. Phys. 41, L368 (2002)

    Article  Google Scholar 

  21. S. Jeon, I. Kiju, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, H. Hwang, In Electron Devices Meeting, 2001. IEDM’01. Technical Digest. International (IEEE, New York, 2001), pp. 20.6.1–20.6.4

  22. A. Hardy, S. Van Elshocht, J. D’Haen, O. Douhéret, S. De Gendt, C. Adelmann, M. Caymax, T. Conard, T. Witters, H. Bender, J. Mater. Res. 22, 3484–3493 (2007)

    Article  Google Scholar 

  23. T.-M. Pan, J.D. Lee, W.-H. Shu, T.-T. Chen, Appl. Phys. Lett. 89, 2908 (2006)

    Google Scholar 

  24. J. Päiväsaari, M. Putkonen, L. Niinistö, Thin Solid Films 472,  275–281 (2005)

    Article  Google Scholar 

  25. M.-K. Song, S.-W. Rhee, Thin Solid Films 492, 19–23 (2005)

    Article  Google Scholar 

  26. X. Fan, H. Liu, X. Zhang, Appl. Phys. A 114, 545–550 (2014)

    Article  Google Scholar 

  27. A. Laha, A. Fissel, E. Bugiel, H.J. Osten, Thin Solid Films 515, 6512–6517 (2007)

    Article  Google Scholar 

  28. T.-M. Pan, J.-D. Lee, W.-W. Yeh, J. Appl. Phys 101, 024110 (2007)

    Article  Google Scholar 

  29. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757–2776 (1996)

    Article  Google Scholar 

  30. Y.H. Wong, K.Y. Cheong, J. Alloys Compd. 509, 8728–8737 (2011)

    Article  Google Scholar 

  31. Y.H. Wong, K.Y. Cheong, J. Mater. Sci: Mater. Electron. 21, 980–993 (2010)

    Google Scholar 

  32. V.V. Afanas’ ev, M. Badylevich, A. Stesmans, A. Laha, H.J. Osten, A. Fissel, W. Tian, L.F. Edge, D.G. Schlom, Appl. Phys. Lett. 93, 192105 (2008)

    Article  Google Scholar 

  33. G. Scarel, A. Svane, M. Fanciulli, In Rare Earth oxide Thin Films, (Springer, Berlin, 2007), pp. 1–14

    Google Scholar 

  34. Q.-Q. Sun, A. Laha, S.-J. Ding, D.W. Zhang, H.J. Osten, A. Fissel, Appl. Phys. Lett. 93, 83509 (2008)

    Article  Google Scholar 

  35. T. Kurniawan, K.Y. Cheong, K.A. Razak, Z. Lockman, N. Ahmad, J. Mater. Sci. 22, 143–150 (2011)

    Google Scholar 

  36. B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach. (Taylor & Francis, Abingdon, 1998)

    Google Scholar 

  37. C.E. Viana, A.N.R da Silva, N.I. Morimoto, Braz. J. Phys. 31, 299–303 (2001)

    Article  Google Scholar 

  38. K.H. Goh, A.S. Haseeb, Y.H. Wong, J. Electron. Mater. 45, 5302–5312 (2016)

    Article  Google Scholar 

  39. S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wuttig, Vacuum 75, 7–16 (2004)

    Article  Google Scholar 

  40. M. Ganesan, M.V.T. Dhananjeyan, K.B. Sarangapani, N.G. Renganathan, J. Alloys Compd. 450, 452–456 (2008)

    Article  Google Scholar 

  41. Y. Xu, J. Wu, W. Sun, D. Tao, L. Yang, Z. Song, S. Weng, Z. Xu, R.D. Soloway, D. Xu, Eur. J. 8,  5323–5331 (2002)

    Article  Google Scholar 

  42. R.A. Nyquist, R.O. Kagel, Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: Infrared Spectra of Inorganic Compounds. (Academic press, Cambridge, 2012)

    Google Scholar 

  43. V.K. Malinovsky, V.N. Novikov, N.V. Surovtsev, A.P. Shebanin, Phys. Solid State, 42, 65–71 (2000)

    Article  Google Scholar 

  44. C.H. Kao, H. Chen, Y.-C. Liao, J.Z. Deng, Y.C. Chu, Y.T. Chen, H.W. Chang, Thin Solid Films 570, 412–416 (2014)

    Article  Google Scholar 

  45. C.-H. Kao, T.C. Chan, K.S. Chen, Y.-T. Chung, W.-S. Luo, Microelectron. Reliab. 50, 709–712 (2010)

    Article  Google Scholar 

  46. K.H. Goh, A.S. Haseeb,Y.H. Wong, Thin Solid Films 606, 80–86 (2016)

    Article  Google Scholar 

  47. M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, G. Klimeck, arXiv preprint arXiv:1502.06178 2015

  48. F. Robert, Pierret: Field Effect Devices (Addison-Wesley Publishing Company, Boston, 1990)

    Google Scholar 

  49. K. Frohlich, R. Luptak, E. Dobrocka, K. Husekova, K. Cico, A. Rosova, M. Lukosius, A. Abrutis, P. Pisecny, J.P. Espinos, Mater. Sci. Semicond. Process. 9, 1065–1072 (2006)

    Article  Google Scholar 

  50. A.T. Fromhold Jr, W.D. Foster, Act. Passiv. Electron. Compon, 3,  51–62 (1976)

    Google Scholar 

  51. L.-Z. Hsieh, H.-H. Ko, P.-Y. Kuei, C.-Y. Lee, Jpn. J. Appl. Phys. 45, 7680 (2006)

    Article  Google Scholar 

  52. Y.H. Wong, K.Y. Cheong, Electron. Mater. Lett. 8, 47–51 (2012)

    Article  Google Scholar 

  53. T. Kurniawan, Y.H. Wong, K.Y. Cheong, J.H. Moon, W. Bahng, K.A. Razak, Z. Lockman, H.J. Kim, N.-K. Kim, Mater. Sci. Semicond. Process. 14, 13–17 (2011)

    Article  Google Scholar 

  54. C.-W. Yang, Y.-K. Fang, C.H. Chen, S.F. Chen, C.Y. Lin, C.S. Lin, M.F. Wang, Y.M. Lin, T.H. Hou, L.-G. Yao, Appl. Phys. Lett. 83, 308–310 (2003)

    Article  Google Scholar 

  55. K.H. Goh, A.S.M.A. Haseeb, Y.H. Wong, J. Mater. Sci. Mater. Electron. 28, 4725–4731 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Malaya through Postgraduate Research Grant (PPP) [PG028-2015A] and Ministry of Higher Education, Malaysia through Fundamental of Research Grant Scheme (FRGS) [FP057-2016].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew Hoong Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetherin, K., Ramesh, S. & Wong, Y.H. Formation of neodymium oxide by thermal oxidation of sputtered Nd thin film on Si substrate. J Mater Sci: Mater Electron 28, 11994–12003 (2017). https://doi.org/10.1007/s10854-017-7009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7009-0

Keywords

Navigation