Skip to main content
Log in

Glass structure, phase transformation and microwave dielectric properties of CaO–B2O3–SiO2 glass–ceramics with addition of La2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CaO–B2O3–SiO2 (CBS) glasses with addition of xLa2O3 (0 ≤ x ≤ 20 wt%) were prepared by conventional quenching method, the glass structure, phase transformation and microware dielectric properties were studied. The glass structure analysis by magic angle spinning nuclear magnetic resonance (MAS-NMR) and infrared (IR) spectroscopy indicated that [BO4] transformed into [BO3] and the proportion of Si–O–Si bridge oxygen bond in [SiO4] tetrahedrons decreased obviously with the addition of La2O3. The differential thermal analysis (DTA) revealed that the CBS glass system kept better glass-forming ability and the transition temperature (T g) decreased from 743 to 724 °C after addition of La2O3. As the content of La2O3 increases, the crystallization tendency of CaB2O4 is suppressed, while that for Ca2SiO4 is promoted. With appropriate content of La2O3 (5 wt%), the sample possess excellent dielectric properties (ε r ≈ 4.1, tanδ ≈ 1.7 × 10−3 at 15 GHz). The variations of dielectric properties are believed to be appreciably associated with the relative content of the phases present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.J. Golonka, B. Pol. Acad. Sci-Tech. 54, 221 (2006)

    Google Scholar 

  2. O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A. Schiller, J. Eur. Ceram. Soc. 21, 1693 (2001)

    Article  Google Scholar 

  3. C.C. Chiang, S.F. Wang, J. Alloys Compd. 461, 612 (2008)

    Article  Google Scholar 

  4. H.K. Zhu, H.Q. Zhou, M. Liu, P.F. Wei, G.J. Xu, G. Ning, J. Mater. Sci. 20, 1135 (2009)

    Google Scholar 

  5. C.R. Chang, J.H Jean, J. Am. Ceram. Soc. 82[7], 1725 (1999)

    Article  Google Scholar 

  6. C.C. Chiang, S.F. Wang, Y.R. Wang, W. Cheng, J. Wei, Ceram. Int. 34, 599 (2008)

    Article  Google Scholar 

  7. S.F. Wang, Y.R. Wang, Y.F. Hsu, C.C. Chiang, J. Alloys Compd. 498, 211 (2010)

    Article  Google Scholar 

  8. S.H. Wang, H.P. Zhou, Mater. Sci. Eng. B–Adv. 99, 597 (2003)

    Article  Google Scholar 

  9. H.B. Shao, T.W. Wang, Q.T. Zhang, J. Alloys Compd. 484, 2 (2009)

    Article  Google Scholar 

  10. X.H. Zhou, B. Li, S.R. Zhang, H.Y. Ning, J. Mater. Sci. 20, 262 (2009)

    Google Scholar 

  11. J.S. Park, Y. Kim, H. Shin, J. Am. Ceram. Soc. 91[11], 3630 (2008)

    Article  Google Scholar 

  12. J.Z. Liu, X.F. Wu, N.X. Xu, Q.L. Zhang, H. Yang, J. Mater. Sci. 26, 8899 (2015)

    Google Scholar 

  13. B. Li, B. Tang, M.J. Xu, J. Electron. Mater. 44, 3849 (2015)

    Article  Google Scholar 

  14. Z. Wang, Q.F. Shu, K.C. Chou, ISIJ Int. 51, 1021 (2011)

    Article  Google Scholar 

  15. X.H. Zhou, E.Z. Li, S.L. Yang, B. Li, B. Tang, Y. Yuan, S.R Zhang, Ceram. Int. 38, 5551 (2012)

    Article  Google Scholar 

  16. I.N. Chakraborty, J.E. Shelby, SR.R.A. Condrate, J. Am. Ceram. Soc. 67[12], 782 (1984)

    Article  Google Scholar 

  17. H.J. Wang, B.T. Li, H.X. Lin, W. Chen, L. Luo, Int. J. Appl. Glass Sci. 1 (2015)

  18. H.J. Wang, B.T. Li, H.X. Lin, W. Chen, L. Luo, Int. J. Appl. Glass Sci. 1 (2016)

  19. C. Gautam, A.K. Yadav, V.K. Mishra, K. Vikram, OJINM, 2, 47 (2012)

    Article  Google Scholar 

  20. A. Gaddam, H.R. Fernandes, J.M.F. Ferreira, RSC. Adv. 5, 41066 (2015).

    Article  Google Scholar 

  21. L.V. Wullen, G. Schwerin, Solid State Nucl. Mag. Reson. 21, 134 (2002)

    Article  Google Scholar 

  22. B.G. Parkinson, D. Holland, M.E. Smith, A.P. Howes, C.R. Scales, J. Phys. 19, 1 (2007)

    Google Scholar 

  23. L.S. Du, J.F. Stebbins, J. Non-Cryst. Solids 315, 239 (2003)

    Article  Google Scholar 

  24. T. Nanba, M. Nishimura, Y. Miura, Geochim. Cosmochim. Acta. 68[24], 5103 (2004)

    Article  Google Scholar 

  25. F. Angeli, T. Charpentier, E. Molières, A. Soleilhavoup, P. Jollivet, S. Gin, J. Non-Cryst. Solids 376, 189 (2013)

    Article  Google Scholar 

  26. M.R. Cicconi, G. Giuli, E. Paris, P. Courtial, D.B. Dingwell, J. Non-Cryst. Solids 362, 162 (2013)

    Article  Google Scholar 

  27. T. Schaller, J.F. Stebbins, M.C. Wilding, J. Non-Cryst. Solids 243, 146 (1999)

    Article  Google Scholar 

  28. R.D. Husung, R.H. Doremus, J. Mater. Res. 5, 2209 (1990)

    Article  Google Scholar 

  29. G. Sharma, K. Singh, S. Mohan, H. Singh, S. Bindra, Radiat. Phy. Chem. 75, 959 (2006)

    Article  Google Scholar 

  30. K. Singh, I. Bala, V. Kumar, Ceram. Int. 35, 3401 (2009)

    Article  Google Scholar 

  31. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990)

    Article  Google Scholar 

  32. A. Aronne, S. Esposito, P. Pernice, Phys. Chem. Glasses 40, 63 (1999)

    Google Scholar 

  33. H. Doweidar, Y.B. Saddeek, J. Non-Cryst. Solids 356, 1452 (2010)

    Article  Google Scholar 

  34. J.P. Wang, J.H. Cheng, P. Lu, J. Wuhan Univ.Technol.-Mater. Sci. Ed. 23, 419 (2008)

    Article  Google Scholar 

  35. J. Han, Y.M. Lai, Y. Xiang, S. Wu, Y. Xu, Y.M. Zeng, J.L. Chen, J.S. Liu, J. Mater. Sci. (2017). doi:10.1007/s10854-016-6291-6

    Google Scholar 

  36. S.V. Stefanovsky, K.M. Fox, J.C. Marra, Mater. Res. Soc. 1518, 53 (2013)

    Article  Google Scholar 

  37. RAY N.H., J. Non-Cryst. Solids 15, 423 (1974)

    Article  Google Scholar 

  38. W. Kauzman, Chem. Rev. 43, 219 (1948)

    Article  Google Scholar 

  39. A. Hruby, Czech, J. Phys. 22, 1187 (1972)

    Google Scholar 

Download references

Acknowledgements

The structure testing was supported by National Center for Magnetic Resonance in Wuhan and Southwest University of Science and Technology. The authors appreciate the financial support from the fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No. SKL-SPM-201535, 201548), the 551 project of Kunming, the Basic Applied Research Foundation (No. 2016FD125, 2016FB083) and Science &Technology Program (NO. 2014DC019) of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Han, J., Lai, Y. et al. Glass structure, phase transformation and microwave dielectric properties of CaO–B2O3–SiO2 glass–ceramics with addition of La2O3 . J Mater Sci: Mater Electron 28, 9911–9918 (2017). https://doi.org/10.1007/s10854-017-6746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6746-4

Keywords

Navigation