Skip to main content
Log in

SnO2-loaded BaTiO3 nanotube arrays: fabrication and visible-light photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well-ordered and vertically aligned BaTiO3 nanotube arrays (BTNTAs) of average diameter 95 nm and wall thickness of 60 nm were prepared by hydrothermal method using titania nanotube arrays as templates. Nanoparticles of SnO2 were also hydrothermally deposited on the surface of BaTiO3 nanotube arrays, to fabricate novel SnO2@BTNTAs heterogeneous nanostructures. Morphology of the SnO2 surface layer on BTNTAs was found to be dependent on the pH employed during hydrothermal synthesis. The visible photocatalytic activity of the SnO2@BTNTAs was evaluated from the degradation of methylene blue (MB). It is found that the SnO2@BTNTAs exhibit enhanced photocatalytic activity under visible-light irradiation when compared to unmodified BTNTAs. Results obtained from the X-ray Photoelectron Spectroscopic and Scanning electron microscopic studies have been combined to establish the influence of defect chemistry and surface morphology on the enhanced visible-light photocatalytic activity of the modified BTNTAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Wang, M.O. Tade, Z. Shao, Chem. Soc. Rev. 44, 5371 (2015)

    Article  Google Scholar 

  2. P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)

    Article  Google Scholar 

  3. J.W. Bennett, I. Grinberg, A.M. Rappe, J. Am. Chem. Soc. 130, 17409 (2008)

    Article  Google Scholar 

  4. T. Qi, I. Grinberg, A.M. Rappe, Phys. Rev. B 83, 224108 (2011)

    Article  Google Scholar 

  5. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001)

    Article  Google Scholar 

  6. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43, 5234 (2014)

    Article  Google Scholar 

  7. R.X. Wang, Q. Zhu, W.S. Wang, C.M. Fan, A.W. Xu, New J. Chem. 39, 4407 (2015)

    Article  Google Scholar 

  8. N. Lu, X. Quan, J.Y. Li, S. Chen, H.T. Yu, G.H. Chen, J. Phys. Chem. C 111, 11836 (2007)

    Article  Google Scholar 

  9. Q. Kang, S. Liu, L. Yang, Q. Cai, C.A. Grimes, ACS Appl. Mater. Interfaces 3, 746 (2011)

    Article  Google Scholar 

  10. X.F. Gao, W.T. Sun, Z.D. Hu, G. Ai, Y.L. Zhang, S. Feng, F. Li, L.M. Peng, J. Phys. Chem. C 113, 20481 (2009)

    Article  Google Scholar 

  11. M. Nageri, V. Kalarivalappil, B.K. Vijayan, V. Kumar, Mater. Res. Bull. 77, 35 (2016)

    Article  Google Scholar 

  12. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  Google Scholar 

  13. Y. Mao, S. Banerjee, S.S. Wong, Chem. Commun. 3, 408 (2003)

    Article  Google Scholar 

  14. J. Zhao, X. Wang, R. Chen, L. Li, Mater. Lett. 59, 2329 (2005)

    Article  Google Scholar 

  15. J. Liu, Y. Sun, Z. Li, Cryst. Eng. Commun. 14, 1473 (2012)

    Article  Google Scholar 

  16. R. Li, Q. Li, L. Zong, X. Wang, J. Yang, Electrochim. Acta 91, 30 (2013)

    Article  Google Scholar 

  17. M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour Mashkani, J. Mater. Sci. 26, 4848 (2015)

    Google Scholar 

  18. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. 26, 3813 (2015)

    Google Scholar 

  19. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci. 27, 11946 (2016)

    Google Scholar 

  20. M. Salavati-Niasari, F. Soofivand, M. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Adv. Powder Technol. 27, 2066 (2016)

    Article  Google Scholar 

  21. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, J. Raman Spectrosc. 43, 1423 (2012)

    Article  Google Scholar 

  22. L. Ting-Hui, L. Hai-Tao, P. Jiang-Hong, Chin. Phys. Lett. 31, 076201 (2014)

    Article  Google Scholar 

  23. L. Ying-Kai, D. Yi, W. Guang-Hou, Chin. Phys. Lett. 21, 156 (2004)

    Article  Google Scholar 

  24. M. Murrata, K. Wakino, S. Ikeda, J. Electron. Spectrosc. Relat. Phenom. 16, 459 (1975)

    Article  Google Scholar 

  25. S. B. Rudraswamy, N. Bhatt, IEEE Sens. J. 16, 5145 (2016)

    Article  Google Scholar 

  26. M.J. Jackman, A.G. Thomas, C. Muryn, J. Phys. Chem. C 119, 13682 (2015)

    Article  Google Scholar 

  27. A.M. Desbuquoit, J. Riga, J.J. Verbist, Inorg. Chem. 26, 1212 (1987)

    Article  Google Scholar 

  28. R. Ren, Z. Wen, S. Cui, Y. Hou, X. Guo, J. Chen, Sci. Rep. 5, 10714 (2015)

    Article  Google Scholar 

  29. V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Adv. Funct. Mater. 21, 3744 (2011)

    Article  Google Scholar 

  30. S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, RSC Adv. 4, 1212 (2014)

    Article  Google Scholar 

  31. L. Ran, D. Zhao, X. Gao, L. Yin, Cryst. Eng. Commun. 17, 4225 (2015)

    Article  Google Scholar 

  32. L.Y. Liang, Z.M. Liu, H.T. Cao, X.Q. Pan, ACS Appl. Mater. Interfaces 2, 1060 (2010)

    Article  Google Scholar 

  33. Y.C. Her, J.Y. Wu, Y.R. Lin, S.Y. Tsai, Appl. Phys. Lett. 89, 043115 (2006)

    Article  Google Scholar 

  34. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2014)

    Article  Google Scholar 

  35. B. Sarkar, K. Chakrabarti, K. Das, S.K. De, J. Phys. D 45, 505304 (2012)

    Article  Google Scholar 

  36. D. Cuong, J. Lee, Integr. Ferroelectr. 84, 23 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors MN is grateful to UGC, Govt. of India for the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanathan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nageri, M., Shalet, A.B. & Kumar, V. SnO2-loaded BaTiO3 nanotube arrays: fabrication and visible-light photocatalytic application. J Mater Sci: Mater Electron 28, 9770–9776 (2017). https://doi.org/10.1007/s10854-017-6729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6729-5

Keywords

Navigation